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Abstract—Forwarding packets based on networking names is
essential for network protocols on different layers, where the
‘names’ could be addresses, packet/flow IDs, and content IDs.
For long there have been efforts using dynamic and compact data
structures for fast and memory-efficient forwarding. In this work,
we identify that the recently developed programmable network
paradigm has the potential to further reduce the time/memory
complexity of forwarding structures by separating the data
plane and control plane. This work presents the new designs of
network forwarding structures under the programmable network
paradigm, applying three typical dynamic and compact data
structures: Bloom filters, Cuckoo hashing, and Othello hashing.
We conduct careful analyses and experiments in real networks
of these forwarding methods for multiple performance metrics,
including lookup throughput, memory footprint, construction
time, dynamic updates, and lookup errors. The results give rich
insights on designing forwarding algorithms with dynamic and
compact data structures. In particular, the new designs based on
Cuckoo hashing and Othello hashing show significant advantages
over the extensively studied Bloom filter based methods, in all
situations discussed in this paper.

I. INTRODUCTION

Packet forwarding is a fundamental function of various

types of network devices running on different layers. For each

incoming packet, the forwarding device transmits it to the link

towards one of its neighbors, until reaching its destination.

There are two main types of packet forwarding: 1) IP prefix

matching that is mostly used on layer-3 routers; 2) name-based

matching that is used on most other network devices. For

name-based forwarding, the input of the forwarding algorithm

is a key (also called as a name or address in different designs)

included in the packet header, and the output is an entry

that matches the key exactly and indicates an outgoing link.

This work focuses on packet forwarding with such name-

based matching, which attracts growing attentions in emerging

network protocols and systems. We provide an incomplete list

of recently proposed name-based forwarding designs:

1) On the link layer (layer-2 or L2), interconnected Ether-

net has been used for large-scale data centers [22][54],

enterprise networks[51][56], and metro-scale Ethernet

[27][25][39][40], where the key is the MAC or other

L2 addresses. Although many existing data centers use

the fat tree based design that uses IP routing, name-

based routing and forwarding still provides a number

of advantages, including flexible management and host

mobility. L2 name-based architectures are also suggested

in many future network proposals [27][25][39].
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Fig. 1. Separating a DCS-based FIB to two planes

2) On the network layer (layer-3 or L3), flow-based net-

works, such as OpenFlow-style software defined networks

(SDNs), match multiple fields in packet headers to per-

form fine-grained per-flow control on packet forwarding

[56][23][38][43]. The matching key is some header fields.

In addition, many new Internet architectures suggest flat-

name forwarding in the network layer, such as MPLS

[42], LTE [55], Mobility-first [41], and AIP [10].

3) On the application layer (layer-7 or L7), a content distri-

bution network (CDN) uses the content ID as the key

to search for the cache server that stores the content

[20][30]. The emerging edge computing provides more

sophisticated content/service caching services [45][50].

Unlike IP addresses, aggregating network names is tough –

if ever possible. Large networks using name-based forward-

ing may suffer from the forwarding information base (FIB)

explosion problem: a forwarding device needs to maintain a

large number of key-action entries in the FIB. To resolve

this problem, for long, there have been efforts to apply

dynamic and compact data structures (DCSes) for the for-

warding algorithms of network names, such as Bloom Filters

[20][51][34], Cuckoo hashing [56][55], and Bloomier filters

[16][15][52][53]. We summarize the desired properties of the

DCSes for forwarding algorithm designs:

1) Small memory footprint. Fast memory is the most

precious network resource, such as the on-chip memory

(SRAM) on a switch, or the CPU cache on a server.

DCSes reduce network infrastructure cost by using small

memory.

2) Fast lookups. Faster lookups mean higher forwarding

throughput. The throughput of a FIB should reach the

line rate to avoid being a bottleneck.

3) Dynamic updates. Modern networks are highly dynamic

due to massive incoming flows and host mobility. Hence,

the DCSes should allow the FIB to be frequently updated.978-1-7281-2700-2/19/$31.00 2019 c© IEEE

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:42:45 UTC from IEEE Xplore.  Restrictions apply. 



Although many FIB algorithms have been proposed, the

recently developed programmable network paradigm [13][14],

such as Software Defined Networks [21][35] and Network

Functions Virtualization [7], still provides the potential to

further reduce the time and memory complexity of forwarding

algorithms. Hence there is a need of re-designing forwarding

algorithms with the DCSes under this new paradigm. We

design and implement new forwarding algorithms for pro-

grammable networks, by re-visiting three representative DC-

Ses: Bloom Filters [12], Cuckoo hashing [36], and Bloomier

filters (Othello hashing) [16][15][52].

As shown in Fig. 1(a), in a traditional design, the controller

only runs the Routing Information Base (RIB), while the

whole FIBs are stored in the data plane. The key inno-

vation of our re-designs is show in Fig. 1(b). We relocate

the memory and computation of the update function from

many FIBs to the central control plane, and the data planes,

while supporting direct updates, focus on fast lookups. Our

approach significantly reduces data plane memory footprint

while preserving the control plane scalability. We conduct

careful analysis and experiments of the proposed methods

for multiple performance metrics, including memory footprint,

lookup throughput, construction time, dynamic updates, and

lookup errors. The results can be utilized for future forwarding

algorithm designs.

Our contributions are summarized as follows. 1) We propose

a new design framework of FIBs in programmable networks.

2) We design new forwarding algorithms with DCSes in the

programmable network paradigm that achieve small memory

and high lookup throughput compared to all existing methods.

3) We implement the proposed methods in real network envi-

ronments deployed in CloudLab [1] for real packet forwarding

experiments. 4) Our results provide rich insights of designing

forwarding algorithms. In particular, we find that the Bloom

filter based methods, which have been extensively studied in

the literature, are not ideal design choices compared to other

proposed methods, in all situations studied in this paper.

The balance of this paper is organized as follows. § II

presents the related work and three DCSes. § III introduces the

network models. We present the forwarding algorithm designs

in § IV and provide the analysis results in § V. The evaluation

results are shown in § VII. We discuss the insights of this

study in § VIII and conclude this work in § IX.

II. BACKGROUND AND RELATED WORK

To address the FIB explosion problem, DCSes have been

proposed as the forwarding data structures in various types of

network devices.

Bloom filters. The Bloom filter [12] is one of the most pop-

ular DCSes used in network protocols. A filter data structure

is a brief expression of a set of keys K. By querying a key

k, a filter should return True if k ∈ K or False otherwise. A

well-known feature of Bloom filters is that its results include

false positives but no false negatives. The basic idea of using

Bloom filters for FIBs is that for every link to a neighbor,

the forwarding node maintains a Bloom filter for the set of
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names/addresses that should be forwarded to this link, such

as Summary Cache [20] and BUFFALO [51]. Each lookup

takes O(K · d) time, and each update takes O(d +K) time,

where d is the node degree. Despite the complex lookup and

update, false positives still occur, which hurt the bandwidth.

The Shifting Bloom Filter [48] achieves fast lookups, but its

false positive rate is high.

Cuckoo hashing. Cuckoo hashing [36] is a key-value

mapping data structure that achieves O(1) lookup time in the

worst case and O(1) update time on average. Many recent

system designs choose the (2,4)-Cuckoo hashing [18][56][55]

to maximize the memory load factor. As shown in Fig. 2: a

Cuckoo hashing is a table of a number of buckets, and each

bucket has 4 slots. Every key-value pair is stored in one of

the 8 slots of the two possible buckets based on the two hash

function results h1(k) and h2(k). The lookup for the value of

a key k is to fetch the two buckets and match k with the keys

from all the 8 slots. The value associated with the matched key

is the result. FIBs using Cuckoo hashing store the link or port

index in each ‘value’ field together with the key (name), such

as CuckooSwitch [56]. ScaleBricks [55] uses both Cuckoo

hashing and SetSep [19] for cluster network functions. SetSep

is a compact structure with no update function, and hence it

is out of the scope of this work.

Bloomier filters. The Bloomier filters [16][15] and their

variants Othello hashing [52][47] and Coloring Embedder

[49] are key-value lookup tables inspired by dynamic perfect

hashing [31][11]. We use Othello hashing as an example to

introduce this idea. As shown in Fig. 3, Othello builds an

acyclic bipartite graph G, where every key k corresponds to an

edge in the bipartite graph connecting the ha(k)-th vertex on

the top and the hb(k)-th vertex on the bottom, based on its two

hash functions ha and hb. As shown in Fig. 4(a), the Othello

lookup result is simply the value of A[h1(k)]
⊕

B[h2(k)],
where A and B are two arrays computed from G and the

key-value information. If G is acyclic, the values in A and B
can be easily determined to satisfy such lookup operation. Re-

hashing will happen if a cycle is found in G. The O(1) update

time is proved in [52]. The important features of Othello are

1) the memory cost is small as it stores no keys in the lookup

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:42:45 UTC from IEEE Xplore.  Restrictions apply. 



1101

11 10 01

00

10

(a) Look up a valid key: specified 
result of forwarding

ℎ 𝑘1

ℎ 𝑘1
11⊕10 ൌ01 1101

11 10 01

00

10

(b) Look up an invalid key: arbitrary 
result

ℎ 𝑘6

ℎ 𝑘6
00⊕?ൌ?

Fig. 4. Lookup of Othello hashing

structure; 2) it uses only two memory accesses to lookup a

key in the worst case; 3) it takes O(1) average time for each

addition/deletion/update. Concise [52] is an L2 FIB design

based on Othello. One weakness of Concise is that it cannot

tell whether a key (name/address) exists in the network. If

a packet carries an invalid key, Concise forwards it to an

arbitrary neighbor, as shown in Fig. 4(b). SDLB [53] and

Concury [44] are L4 load balancers using Othello.

III. NETWORK MODELS

A. Optimizing DCSes in Programmable Networks

Programmable networks use software, running on general-

purpose computers or programmable switches, to perform

various network functions, e.g., packet forwarding, firewalls,

load balancer, and traffic monitoring. The typical examples

include SDNs [32][26][24][21][35][13], software routing and

switching [28][38][56][23][43], and network functions virtual-

ization (NFV) [7][37][17]. We observe that the programmable

network paradigm provides a new opportunity to allow new

data structures and algorithms being run on network devices

and their further optimizations. As shown in Fig. 1(a), existing

networks require each data plane device to host the entire FIB,

such as the flow table, which supports both the lookup and

update functions. Even in the current SDNs, the controller

only runs the Routing Information Base (RIB) but not the

FIBs. We propose to split the FIB into two components, which

perform the lookup and update functions respectively. The

FIB data plane (DP) component focuses on the lookup and

only performs simple memory writes for updates. Hence the

DP fits in fast memory (e.g., switch ASICs or CPU cache).

The FIB control plane (CP) component is responsible

for the full states and calculations for the construction and

updates of the DPs and can be run on a server. This idea

creates two optimization opportunities for FIB designs: 1)

without the update component, the FIB lookup function can

be built with a DCS with small memory footprint; 2) The FIB

construction and update component can be reused for network-

wide data-plane nodes, to preserve control-plane scalability.

The reusability depends on the specific application. However,

it is always more efficient than maintaining a different update

component for every node.

B. Forwarding Model

There are a total number of n forwarding nodes inter-

connected to form a network. Each port of a node is linked to

either a host or another node. The number of ports of a node

is d. Each host has an address k as its unique ID or search key.

The forwarding structure (i.e., the FIB) on each node should

include the host-port mapping of all hosts in the network. The

port information of k in the FIB indicates the next-hop node

to route the packet to host k.
Practical examples: In a large-scale Ethernet (e.g.,

large organizations, metro Ethernet, and L2 data center

networks)[27][22][39], there are a huge amount of physical

hosts. Each host has an ID (e.g., its MAC address). An

interconnection of switches connects the hosts. Each switch

has multiple ports connecting neighboring switches and hosts.

A switch may be a gateway that connects to external networks

and filters alien keys – an alien key is a key that does not exist

in the network – or a core switch that only connects to internal

devices. Each network packet (Ethernet frame) processed by

a switch includes the MAC of the destination host. A switch

forwards the packet to a neighbor based on FIB lookups using

the MAC. Many modern networks are variants of this model

[27][22][39]. For flow-based networks [32], the flow ID may

be a combination of source/destination IPs, MACs, and other

header fields. The forwarding may be per flow basis, rather

than per destination basis. LTE backhaul networks and core

networks can also be regarded as an instance of the L2 network

model, especially for the down streams from the Internet to

mobile phones. The destinations are mobile phones, and the

IDs are Tunnel End Point Identifiers (TEIDs) or International

Mobile Equipment Identities (IMEIs) of the mobiles [55]. We

do not study routing protocols in this work and focus on

forwarding.
Application-layer (L7) forwarding. L7 network forward-

ing model is slightly different from the above L2/L3 models.

The examples of L7 forwarding include CDN content lookups

[20], distributed data storage [9], P2P systems, and edge com-

puting [45]. In L7, a node can be connected to arbitrarily many

neighbors, because those connection links are virtual, such

as TCP sessions. The number of neighbors of an L2 switch

is bounded by the number of physical ports: an important

parameter of the switch related to its price.
Packet forwarding in L2 and L7 can be simplified and

unified in the following statement: given a packet carrying the

key k, the forwarding structure should return the index of the

corresponding outgoing link. The network updates discussed

here can be key addition (new host joining with a new address

in L2 and new content being stored in L7), key deletion

(existing host failing or leaving in L2, and new content deletion

in L7), or value update of a key (host moving to a new location

or routing path changes in L2 and content being stored at a

new location in L7).
Although this work mainly focuses on the L2/L3 forwarding

model due to space limit, the proposed methods and results

may still apply to L7.

IV. FORWARDING STRUCTURE DESIGNS

By exploring the potential of the programmable network

paradigm, we optimize the lookup/memory/update efficiency

of DCSes based forwarding algorithms. We propose three for-

warding structures and algorithms: Bloom Forwarder (BFW)

based on Bloom filters [12], Cuckoo Forwarder (CFW) based

on a new data structure Cuckoo Filtable, and Othello For-

warder (OFW) that extends Othello hashing [52]. CFW and

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:42:45 UTC from IEEE Xplore.  Restrictions apply. 



ℎଵ 𝑘
ℎଶ 𝑘

𝑓𝑘, 𝑣𝑛b buckets 

4 slots

key 𝑘
0
1

2
3
4

If two keys 𝑘1, 𝑘2 collide
𝑘1, 𝑣 𝑘2, 𝑣

Lv1 Cuckoo Filtable stores fingerprints

Lv2 table stores a small set of 
full keys

Fig. 5. Example of Cuckoo Filtable

OFW are considered our main design contributions, and

BFW is a baseline for comparison.

A. Bloom Forwarder (BFW)

Limitations of existing methods. Both BUFFALO [51] and

Summary Cache [20] use Bloom based forwarding, and their

ideas are similar. For every outgoing link, the forwarding node

maintains a Bloom filter (BF) representing the keys of the

packets that should be forwarded to this link. To look up a

key, the node iteratively checks each BF and then picks the

index of the first matched BF [20] as the link index. There are

d BFs for d links on a node. Summary Cache uses the counting

Bloom filters (CBFs), which support deletion operations. The

drawback of CBFs is that they increase the memory cost by

a factor of log2 nk in the worst case, where nk is the number

of keys. BUFFALO [51] uses BFs as its DP and maintains

CBFs in its CP to save the switch ASICs. The main weakness

of using CBFs in the CP is that CBFs only record the hashed

bits but do not store keys. Hence, it is impossible to reconstruct

the DP in cases like topology changes and BF resizing because

reconstruction requires retrieving all original keys to build new

BFs.

Bloom Forwarder (BFW). BFW uses a similar DP design

to BUFFALO [51], but a different CP design. We follow the

extensive optimizations proposed in BUFFALO to minimize

the false positives. In addition, we propose to use a Cuckoo

hashing table to store all keys in the CP because the CBFs

do not support DP reconstruction. The DP includes both the

BFs of all ports for lookups and a set of CBFs to support

incremental updates without reconstruction. The CBFs are kept

in DP because a centralized CP may neither have enough

memory to maintain all CBFs of all forwarding nodes nor

enough computation power to perform a small update (such as

new address join or leave), which will trigger different updates

in different CBFs for all DPs.

B. Cuckoo Forwarder (CFW)

Limitations of existing methods. CuckooSwitch [56], the

typical example of Cuckoo hashing based forwarding, uses the

(2,4)-Cuckoo hashing table as its FIB, and stores the full keys

in the hash table. This approach incurs high memory overhead

on the DP. Cuckoo filter [18] stores the fingerprints of keys

rather than the full keys, but it only supports membership

queries and cannot be used as the FIB.

New Design: Cuckoo Forwarder (CFW) Data Plane. The

CFW DP uses a new structure design proposed by us called

Cuckoo Filtable, which borrows the ideas from both Cuckoo

hashing and Cuckoo filters. It is a table of nb buckets and

each bucket includes 4 slots. Each slot stores the fingerprint
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Cuckoo hashing:
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Fig. 6. CFW insertion and lookup workflows

fk of a key k and the value v associated with k, which is the

index of the link to forward packets carrying ID k, as shown

in Fig. 5. fk is the fingerprint of k with a fixed and much

shorter length than k, which can be computed by applying

a hash function to k. Storing fk instead of k significantly

reduces the memory cost. To lookup k for an incoming packet,

CFW fetches two buckets based on h1(k) and h2(k) and

computes the fingerprint fk. Then for each slot in these two

buckets, CFW compares fk with the stored fingerprint. If

there is a match, the stored value v, which is the link index

of the next hop neighbor, will be returned. Different from

the existing “partial key Cuckoo” solution [29], the Cuckoo

Filtable addresses the following challenges.

Challenges in CFW DP design. By storing the fingerprints,

CFW experiences the false hits: The fingerprint f(k) of a key

k will match a slot that stores the fingerprint of another key

k′ if f(k) = f(k′). There are two kinds of false hits. 1)

k does not exist in the network, called an alien key, and it

has the same fingerprint as an existing key k′. This type of

false hits is called false positives. It is impossible to avoid

false positives unless CFW stores the entire keys. The false

positive rate depends on the length of the fingerprints. 2) k
and k′ both exist in the network and happen to share the same

fingerprint and locate in the same bucket. This is called a valid

key collision. This problem is critical: in an L2 Ethernet-based

enterprise or data center network, all forwarding nodes in a

subnet/data center may share the same set of keys [27], and

thus, a pair of colliding valid keys k and k′ will collide at

every node. One of the destinations will never be successfully

accessed. We call this problem as key shadowing.

To resolve valid key collisions, we adopt a two-level design,

as shown in Fig. 5. Level 1 is a Cuckoo Filtable that stores

non-colliding fingerprints and their values, as described above.

Level 2 is a Cuckoo hashing table that stores full keys whose

fingerprints collide with one or more other keys. A key k will

be moved to Level 2 if these two conditions are satisfied: 1)

there is another k′ such that fk = fk′ ; and 2) k and k′ have at

least one common bucket. Each key relocated to Level 2 will

be inserted to a collision avoidance set (explained later) to

prevent future false hits. We expect that only a small portion

of keys are stored in Level 2. Thus the memory cost does not
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increase significantly. A lookup operation is to first search for

the fingerprint in the first level, and if there is a miss, CFW

looks up the key in the second level, as shown in Fig. 6(a).
New Design: CFW Control Plane. The CFW CP stores

the network topology and routing information. For the FIB, the

CFW CP uses a two-level design to support fast constructions

and updates for all DPs. The difference between the CP FIB

and the DP FIB is that each slot in Level 1 of CP FIB

stores three fields: the full key k, the fingerprint fk, and the

physical host ID (only for multi-tenant networks). The full

keys are used to help key additions and deletions. When a

reconstruction is needed, the two-level CP FIB can immedi-

ately be converted to the two-level DP FIB by removing all

full key fields. Besides, when some DPs hold the same set

of keys, the CP FIBs of the nodes share the same ‘skeleton’:

the same key at different nodes is in the same position of

the lookup structure (though their value fields are different).

The construction of a DP FIB is to directly copy the skeleton

without full keys and resolve each key to the port index on

the node based on the routing information stored in the RIB.

This property has been not explored by any prior work.

Based on this design, if there is a central control program, a

network-wide update will be extremely fast.
Challenges in CFW CP design. One problem may happen

when there is a three-key collision: keys a, b, and c have the

same fingerprint and share a bucket. a and b are already stored

in the Level 2 hash table. When c is added to the FIB, it will

be directly added to the Level 1 without collisions – because

a and b are not there. However, it causes a problem in DP

lookups: all lookups of a and b will hit c’s slot.
In CFW, this problem is resolved by storing additional

information in Level 1 of CP FIB. Level 1 maintains a collision

avoidance set at each bucket, which stores all valid keys that

have this bucket as one of its two alternative buckets. For every

key being inserted, CFW should first check if its fingerprint

collides with any fingerprint in the collision avoidance sets

of its two alternative buckets to avoid possible collisions, as

shown in Fig. 6(b). Every inserted key is added to the collision

avoidance set of both the alternative buckets. If a collision is

detected before the insertion, the two colliding keys are moved

to the second level.
C. Othello Forwarder (OFW)

We further explore the efficiency of Othello hashing [52]

for a new FIB design in programmable networks.
Limitations of existing methods. Concise [52] is an L2 FIB

based on Othello hashing. Concise has two main limitations.

1) It only includes the design for a single switch but misses

the design for network-wide CP-DP coordination; 2) It has no

ability to filter alien keys that do not belong to the network.
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New Design: Othello Forwarder (OFW) Data Plane. The

OFW DP consists of two arrays A and B, and two different

hash functions h1 and h2. The lookup of a given key k
works as follows: the h1(k)-th element in A, A[h1(k)], and

the h2(k)-th element in B, B[h2(k)], are fetched; and the

DP calculates τ = A[h1(k)]
⊕

B[h2(k)]. The result τ is the

concatenation v||f , where v is the index of the forwarding port

and f is a fingerprint to filter alien keys, as in Fig. 7. The DP

then calculates the fingerprint fk of the key k. If fk = f , v is

returned, otherwise null is returned to indicate an alien key. If

all the request keys are guaranteed to be valid, length of f is

set to 0. The main drawback of adding fingerprints is the high

memory cost because the total number of slots in arrays A and

B is 2.33nk for nk keys, and thus, one bit in the fingerprint

field contributes 2.33 bits to the overall memory. Intuitively,

when the fingerprint grows by 1 bit, the DP can reduce 50%

false hits. An interesting result is that using only 1 bit can filter

more than 50% alien keys: we call the last bit of a fingerprint

as ‘emptiness indicator’, which is set to 1 when this element

in the array A or B is associated with one or more keys. If

both indicators in the fetched two elements are 1, then there

may be a key matching the two values. If either of them is 0,

then the lookup key must be an alien key.

New Design: OFW Control Plane. The OFW CP uses a

new data structure, OthelloSet, to support efficient network-

wide FIB updates. The simplest way to maintain the OFW CP

is to maintain an array of key-port pairs for every node. In this

way, however, the CP may not have enough memory to hold all

the arrays and the DP construction will be prohibitively time-

consuming. Our important observation is that if some nodes

share the same set of keys, they also share the same bipartite

graph G because G only depends on the keys. Hence, OFW

CP maintains the routing information, an array of key-host

pairs, and a ‘skeleton’ for all DPs. As shown in Fig. 8, one

graph G and two arrays X and Y are maintained in the CP as

the ‘skeleton’, such that X[ha(k)]
⊕

Y [hb(k)] is the index of

the key-host pair array. For construction of each node, OFW

CP calculates the host-port mapping for each key in the array.

Then based on G and the derived key-port mapping, the OFW

DP (arrays A and B for lookup) can be easily constructed.

The reasons to use OthelloSet are: 1) OthelloSet stores full

key-value information which suffices to be a CP data structure;

2) we have to maintain a bipartite graph G of the Othellos at

the CP to quickly synchronize with DPs. The key insight here
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Symbol Description
nk total number of valid keys
d number of links
lp length of port index encoding
lf length of fingerprint field in slots
lk length of a key
ls length of counters in CBF
lb bucket length in Cuckoo hashing or Cuckoo filter

nb
number of buckets a key is mapped to in Cuckoo

hashing or Cuckoo Filtable (usually 2)
ns number of a slots in a bucket (usually 4)
rl load factor of Cuckoo hashing or Cuckoo filter

el el =
1

rl
l number of hash functions for a Bloom filter

TABLE I
NOTATIONS

is that, although the link indices (values) corresponding to the

keys are different on different nodes, h1, h2, and G can be

shared between the CP OthelloSet and all CPs in the network.

To construct a new FIB or to incrementally update FIBs in the

network, Othello reconstruction is no longer needed, the CP

only has to determine the values to fill the slots in arrays A
and B.
D. Control plane reusing and scalability

The key reason of letting the BFW DP to store the CBFs

is that the CBFs cannot be reused among different forwarding

nodes, and every node must have a set of unique CBFs. Hence,

storing the CBFs in the central controller will cause significant

scalability problem. In fact, the server used in our experiments

cannot afford storing CBFs for over 100 nodes. On the other

hand, the DPs of CFW and OFW can be reused if different

nodes are forwarding a same set of addresses, which is true

in many L2 networks [22][27][25][39]. We understand that

in some practical networks that are not pure L2 flat networks,

nodes in different regions may have different sets of addresses.

However, the designs of CFW and OFW can still significantly

reduce the control plane overhead if some nodes share similar

sets of addresses, e.g., those in a same subnet.

V. ANALYSIS AND FURTHER OPTIMIZATION

We conduct theoretical analysis on the following three

aspects: the memory footprint in the DP, times of hash function

invocations and memory reads for each lookup, and times of

hash function invocations and memory reads and writes for

each FIB update. We also present the system design details

guided by the analysis. The notations are listed in Table I.
A. DP memory footprint

The data structures at the DPs are analyzed as two parts for

BFW and CFW – the total memory footprint and the memory

footprint of frequently accessed parts during lookup. We use

the symbol M to denote the overall memory footprint, and let

Mf to be the memory footprint of the mostly accessed parts

that can be hosted in fast memory.

BFW. For BFW, a FIB is divided into two parts: the

counting Bloom filter and the Bloom filter. The Bloom filter

is the frequently accessed part. The FIB memory footprint

of BFW M b and M b
f (both in bits) are (1 + ls)m and m,

respectively, where m is the sum of the lengths of all Bloom

filters and m = hnk/ ln 2 for h hash functions [12].

CFW. The CFW DP consists of two levels. Level 1 is

the Cuckoo Filtable that stores key fingerprints, which is the

frequently accessed part. Level 2 stores the full keys for the

colliding keys. We first calculate the expected portion of keys

at Level 1 η and then derive the expected CFW memory

footprint M c. Our experiments show that η is a function of

lf and is independent of nk. We define the function Eη(l) to

reflect the experimental results. Based on that, the memory

footprint of Level 1 is M c
f = Eη(lf ) · nk · el(lf + lp) and the

total memory is M c = M c
f + (1− Eη(lf ))nk · el(lk + lp).

OFW. There is only one data structure in the OFW DP,

which means the whole FIB memory Mo and the most

accessed memory Mo
f are the same: Mo

f = Mo = 2.33nk ·
(lp + lf ), where the coefficient 2.33 is derived in [52].

B. Time complexity

Although different FIB designs have different workflows in

lookup, hashing keys and loading memory contents are com-

mon and most time consuming, compared to other operations

such as calculating memory offsets. Hence, we use the number

of memory accesses and hash function invocations to measure

time complexity. We denote the numbers of memory accesses

and hash function invocations as Cm and Ch respectively. We

denote the expected numbers of memory loads and hash func-

tion invocations of an alien key as Cm,e and Ch,e respectively.

The detailed derivations of the following results are skipped

due to space limit, but are available on [6].

BFW.

E(Cb
h) =

d−1
∑

i=1

1

d
((i− 1)Ct + l) =

d− 1

2
Ct + l

E(Cb
h,e) =

(

d−1
∑

i=1

(

(1− p)l
)i−1

·
(

1− (1− p)l
)

(i · Ct)

)

+
(

(1− p)l
)d

(d · Ct)
(1)

E(Cb
m) = E(⌈lk/lc⌉+ Cb

h) = ⌈lk/lc⌉+ E(Cb
h)

E(Cb
m,e) = E(⌈lk/lc⌉+ Cb

h,e) = ⌈lk/lc⌉+ E(Cb
h,e)

(2)

CFW. (Assuming the key locations are uniformly random)

E(Cc
h) = 2 +

nb − 1

2
+ (1− Eη(lf )) (1 + nb)

E(Cc
h,e) = 1 + nb + nb = 1 + 2nb

(3)

E(Cc
m) = ⌈lk/lc⌉+

nb·ns
∑

i=1

⌊i/ns⌋ · E(Cb) + E(Cm,i)

nb · ns

E(Cc
m,e) = ⌈lk/lc⌉+ nb · E(Cb)

(4)

OFW. The expected portion of empty slots in A and B

are: ǫa = (ma−1
ma

)nk ≈ e−
nk
ma ≈ 0.471 and ǫb = (mb−1

mb
)nk ≈

e
−

nk
mb ≈ 0.368. Let lg = gcd(lf + lp, lc). Assume the lf + lp

is always smaller than lc. We get:

Co
h = 3

Co
h,e = ǫa + 2 · (1− ǫa)ǫb + 3 · (1− ǫa)(1− ǫb)

(5)
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E(Co
m) = ⌈lk/lc⌉+ 2 ·

(

1 +
lf + lp − lg

lc

)

E(Co
m,e) = ⌈lk/lc⌉+ ((1− ǫa)ǫb + 2 · (1− ǫa)(1− ǫb))

·

(

1 +
lf + lp − lg

lc

)

(6)
C. Collision rate and false positive rate

We consider two problems caused by hash collisions: valid

key collisions and false positives. A key collision happens

between two valid keys, causing the lookups of the two keys

ending up with the same value. A false positive happens when

an alien key that does not exist in the network gets the value

of an existing key. We use CR and FP to denote the valid key

collision rate per lookup and the alien key false positive rate

per lookup, respectively. We obtain the following results.

BFW.

FPb = 1−
(

1− (1− p)l
)d

E(CRb) =

d
∑

i=1

(

1−
1

2l

)i−1

·
1

d2l

(7)

CFW.
CRc = 0

FPc = 1− (1−
1

2lf
)rlEη(lf )·nsnb

(8)

OFW.
CRo = 0

FPo =
1

2lf−1
· (1− ǫa) · (1− ǫb)

(9)

D. Numerical results and discussions

We show the numerical results to compare different for-

warders and make some design choices based on the numerical

results.

DP memory footprint. We consider the DP memory in

two situations: with and without gateways. As described in

§ III, the gateways may exist at the border of a network. A

gateway is also a forwarder, but with full key information.

Hence, a gateway will drop invalid requests and only forward

valid requests. Having all incoming requests passing through

the gateways, there is no false positive at internal forwarders. If

gateways are used, then other forwarding nodes do not need

to filter alien keys. Note even if gateways exist, BFWs on

internal nodes still suffer from the key collisions, but there

is no collision in CFW and OFW. We fix nk to be 10M ,

lk = 128, CR = 1h for BFW, lf = 0 for OFW, and we pick

lf for CFW giving out the smallest memory footprint. We let

lp range from 5 to 13. The results in Fig. 9 show that OFW

provides the least memory cost, around 20%-60% of the other

two.

If there is no gateway, we calculate the smallest memory

footprints of the three forwarders achieving a certain level

of false positive rate. We fix nk to 10M and let the false

positive rate range from 0.01 to 0.0001. We carefully adjust the

parameters of the three forwarders to let them have the smallest

memory footprint while meeting the target false positive rate.

The numerical results are shown in Fig. 10.

Comparing the results in Figures 9 and 10, it is clear that

when gateways exist, OFW costs the much less memory than

the other two designs. However, without gateways, OFW needs

much more memory to achieve a certain level of false positive.

CFW costs the least memory when false positive < 0.4%.

Hence, an ideal solution may be using Cuckoo hashing or

OthelloSet at the gateways and using OFWs for the remaining

internal nodes.

VI. IMPLEMENTATION

Algorithm implementation. We implement all three for-

warder prototypes in a total of 4360 lines of C++ code and

these prototypes share a part of the code. We build the CFW

prototype based on the presized cuckoo map implementation

in Tensorflow repository [8], with several major modifications

to implement Cuckoo Filtable and the control plane of CFW.

We also implement the collision avoidance sets at the control

plane Level 1 table. The insertion workflow is specially imple-

mented and tested for the two-level Cuckoo Filtable and the

collision avoidance sets. We reuse the code from the GitHub

repository of Othello hashing [3] and add the extra functions

such as fingerprint checking and the control plane to data

plane incremental synchronization. As the Bloom filters and

CBFs are easy to implement, we just implement the BFW and

its control plane from scratch and implement the incremental

update feature. We adopt the Google FarmHash [2] as the hash

function for all experiments.

Algorithm benchmark setup. We evaluate the single-

thread performance of three forwarder algorithms on a com-

modity desktop server with Intel i7-6700 CPU, 3.4GHz, 8

MB L3 Cache shared by 8 logical cores, and 16 GB memory

(2133MHz DDR4).

CloudLab benchmark setup. We implement the forwarder

prototypes BFW, CFW, and OFW using Intel Data Plane

Development Kit (DPDK) [4] running in CloudLab [1]. DPDK

is a series of libraries for fast user-space packet processing [4].

DPDK is useful for bypassing the complex networking stack

in the Linux kernel, and it has the utility functions for huge-

page memory allocation and lockless FIFO, etc. CloudLab

[1] is a research infrastructure to host experiments for real

networks and systems. Different kinds of commodity servers

are available from its 7 clusters. We use two nodes c220g2-

011307 (Node 1) and c220g2-011311 (Node 2) in CloudLab to

construct the evaluation platform of the forwarder prototypes.

Each of the two nodes is equipped with one Dual-port Intel

X520 10Gbps NIC, with 8 lanes of PCIe V3.0 connections

between the CPU and the NIC. Each node has two Intel E5-

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:42:45 UTC from IEEE Xplore.  Restrictions apply. 



25
6K

51
2K 1M 2M 4M 8M 16

M
32
M

64
M

Number of keys in FIB

0

100

200

300

400
M
em

or
y
fo
ot
p
ri
nt

(M
B
) Cuckoo HT

CFW

Fig. 11. Memory: CFW vs.
Cuckoo hashing

25
6K

51
2K 1M 2M 4M 8M 16

M
32
M

64
M

Number of keys in FIB

0

10

20

30

40

50

60

C
on
st
ru
ct
io
n
ti
m
e
(s
) Vanilla

OthelloSet

Fig. 12. DP construction: Othel-
loSet vs. Concise

2660 v3 10-core CPUs at 2.60 GHz. The Ethernet connection

between the two nodes is 2x10Gbps. The switches between

the two nodes support OpenFlow [32] and provide the full

bandwidth.

Logically, Node 1 works as one of the forwarders in the

network, and Node 2 works as all other nodes in the network,

including gateways and switches. Node 2 uses the DPDK

official packet generator Pktgen-DPDK [5] to generate random

packets and sends them to Node 1. The destination IDs carried

by the generated packets are uniformly sampled from a set

of valid IDs. BFW, CFW, or OFW is deployed on Node 1

and forwards each packet back to Node 2 after determining

the outbound port of the packet. By specifying a virtual link

between the two servers, CloudLab configures the OpenFlow

switches such that all packets from Node 1, with different

destination IDs, will be received by Node 2. Node 2 then

records the receiving bandwidth as the throughput of the whole

system.

Network setup. We use one ISP network topology from the

Rocketfuel project [46] as the topology model of the simulated

network. Gateways are placed in the networks. ld of OFW is

set to 0, while ld of Level 1 of CFW is set to 13 for lowest

memory footprint. The lookup keys may be valid or alien,

sampled from the following categories: 32-bit IPv4 addresses,

48-bit MAC addresses, 128-bit IPv6 addresses, and 104-bit

5-tuples.

VII. EVALUATION

In this section, we carry out the algorithm benchmark and

the CloudLab experiments to evaluate the performance of the

three forwarder prototypes.

A. Comparison methodology

The distributions of lookup requests are simulated in two

types: uniform distribution and Zipfian distribution. To under-

stand the performance variations, each data point is the average

of 10 experiments with different random seeds and the error

bar on each data point shows the minimum and maximum

value among the 10 results.

We conduct two kinds of comparisons: 1) Algorithm micro-

benchmarks to examine different performance metrics; 2) Real

packet forwarding experiments in CloudLab to understand

the overall performances of the three forwarders in a real

network. For algorithm micro-benchmarks, we compare the

following performance metrics of all three forwarders: 1)

Lookup throughput of valid and invalid addresses; 2) Control

plane to data plane synchronization latency; 3) Control plane

construction time.

B. Algorithm evaluation

Compare to prior methods. We have conducted the ex-

periments of the studied methods with prior solutions: CFW

vs. CuckooSwitch [56]; OFW vs. Concise [52]. All of BFW,

CFW, and OFW have a better or same performance

in throughput and memory efficiency compared to prior

solutions. We show some representative results. We calculate

the memory footprint for a single FIB to show that the CFW

saves a considerable amount of memory compared to Cuckoo

hashing as in CuckooSwitch. We set the lk = 64 (MAC

addresses) for both FIBs, and FP = 1h for Cuckoo Filtable.

The results in Fig. 11 shows CFW, avoiding storing full keys,

saves > 3x memory compared to Cuckoo hashing. To show

the advantage of adopting OthelloSet in OFW, we compare

the construction time for a single forwarder: exporting OFW

DP from OthelloSet CP skeleton vs. building OFW DP from

scratch. We set lk = 48 and lp = 8. As shown in Fig. 12,

OthelloSet achieves > 3 faster DP construction and for a

network of 64M entries. In summary, both CFW and OFW

significantly improve the existing methods. We show more

results by comparing them with BFW.

Lookup throughput. We evaluate the lookup throughput of

both the gateway node and the core node. Figures 13 to 16

show the throughput of BFW, BFW gateway (BGW), CFW,

CFW gateway (CGW), OFW, and OFW gateway (OGW) in a

network where forwarding addresses are valid MAC addresses.

The experiments are performed with single-thread instances of

the three prototypes. We change the total amount of addresses

stored in the FIB and observe the throughput in terms of

million queries per second (Mqps).

The throughput decreases with the growth of FIB size

because larger FIBs incur higher cache miss rates. OFW

performs around 3x faster than CFW because of its small

memory and simple lookup logic. BFW performs >10x worse

than the other two. OGW performs 2x faster compared to other

gateways when FIB size is small. As memory loads dominant

the lookup latency for gateways when FIB is large, the lookup

throughputs of all three forwarders are close. OFW performs

slightly better under Zipfian distribution than under uniform

distribution when the FIB size is 4M.

Different types of keys. We evaluate the lookup throughput

for different key types, including IPv4, MAC, IPv6, flow ID,

and URL (CDN content name). The results in Fig. 17 show

that OFW always achieves the highest throughput, seconded

by CFW.

Alien addresses. To understand the difference between

lookups of alien addresses and valid addresses, we also exam-

ine the alien address lookup at gateways. Fig. 18 shows the

throughput of BFW gateway (BGW), CFW gateway (CGW),

and OFW gateway (OGW) where forwarding addresses are

invalid MAC addresses. We vary the total amount of addresses

stored in the FIBs. All gateways show performance decreases

with alien addresses because CFW perform key matching

for all addresses in the two buckets of the two levels (16

slots in total) to conclude the address is alien, and OFW

performs one extra address lookup to detect the alien address.
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The performance drop for OFW is caused by the memory

expansion, and the decrease only happens at small FIB sizes.

Data plane incremental update. As the valid addresses and

their corresponding values are subject to change at runtime to

reflect the network dynamics, FIB incremental updates happen

frequently. The workflow of an incremental update is modeled

as below. 1) The control plane receives an update report from

the application specific message sources. Updates have three

types: key addition, key deletion, and value modification. 2)

The control plane updates the FIB skeleton to reflect the

change and generates update messages for data planes based

on the skeleton and the network routing information. 3) The

data plane of each node receives the update message and

updates its FIB accordingly.

The evaluation focuses on the communication overhead

between the control plane and data planes, as well as the

update throughput for the data planes. We set the FIB size to

4M and use the MAC addresses. We uniformly generate update

messages of three different types and apply the same sequence

of updates to the three forwarders. We record the average

message lengths and the finish time of different update types,

and we calculate the throughput of different update types in

millions of operations per second (Mops).

Fig. 19 shows the update message lengths of BFW, CFW,

and OFW. Value modification messages of OFW is longer than

those of CFW because a value modification in OFW involves

recoloring the whole connected component. Deletion messages

are much shorter for OFW because it only needs to mark the

empty indicator bits in up to 2 slots. Though CFW and OFW

do not need to include full keys in the update messages, their

addition messages are longer because CFW needs to include

the cuckoo path, and the OFW needs to include the recoloring.

Fig. 20 shows the update throughput of BFW, CFW, and

OFW. OFW is fast in key deletion because it only needs to

mark the empty indicator bits. CFW is more than 10 times

faster than others on value modifications because the update

of CFW is simply copying the value to the specified slot. As

we expect the update is less than 1M per second, all the three

forwarders support realtime incremental updates.

Construction time. Although most updates in a network

are incremental updates, there are always cases where new

DP construction is needed, such as system checkpoint loading

or forwarding node addition. We examine the construction

time of a forwarding structure. Fig. 21 shows the control

plane construction time at different FIB sizes. CFW and OFW

are about 5x slower than BFW in CP construction. Because

Cuckoo Filtable is faster to construct than Othello and the two-

level design degrade the construction performance of CFW

CP. However, the two-level design is necessary to make the

data plane memory consumption times smaller than the plain

Cuckoo hashing approach, which stores addresses. The high

variation of control plane construction time in OFW is because

of the varying number of rebuild times. In contrast, the CFW

faces much less rebuild during the construction.

Fig. 22 shows the construction time from the CP to a

single DP at different FIB sizes. CFW and OFW data plane

constructions are fast because of our ‘skeleton’ design. The

addresses are MAC addresses. The construction involves value

reassignments because CP stores the mapping from addresses

to hosts while the FIB in a DP is a mapping from addresses to

links. CFW is fast because the value reassignment is simply

traversing over slots. In OFW, the value reassignment involves

traversing connected components, which exhibits less locality

than that of CFW.

C. Evaluation in a real network

We conduct both single-thread and multi-thread forwarding

experiments to evaluate the throughput of different forwarders.

The multi-thread experiments run on the DPDK built-in poll

mode.

We first evaluate the maximum forwarding capacity of Node

1 by an ‘empty’ forwarder that loads the key from each packet

and transmits it to Node 2, without looking up any FIB or

table. The maximum capacity is 28.40Mpps for 64-byte L2

packets.
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Fig. 22. Single DP construction
time

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M

Number of keys in FIB

5

10

15

20

25

T
h
ro
u
gh
p
u
t
(M

p
p
s)

OFW

CFW

BFW

Fig. 23. DP throughput for Zip-
fian in CloudLab (single thread)
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Fig. 24. DP throughput for Zip-
fian in CloudLab (two threads)
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Fig. 25. DP throughput for Uni-
form in CloudLab (1 thread)
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Fig. 26. DP throughput for Uni-
form in CloudLab (2 threads)
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Fig. 27. DP throughput in Cloud-
Lab (invalid MACs, 1 thread)
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Fig. 28. DP throughput in Cloud-
Lab (invalid MACs, 2 threads)

Throughput. Figures 23 to 26 show the throughput of BFW,

CFW, and OFW where the forwarding keys are valid MAC

addresses. We vary the total amount of addresses stored in

the FIB and observe the throughput. The forwarders have

lower throughput under uniform key distribution because the

memory access pattern exhibits lower locality. OFW per-

forms the best among the three on both single thread and

two threads. While single thread OFW almost reaches the

forwarding capacity, two threads of OFW are sufficient to

reach the forwarding capacity for a 16M FIB. Throughput

for Zipfian distribution grows for all three forwarders because

their memory access patterns have more locality. CFW on two

threads also reaches the forwarding capacity. For all cases,

OFW and CFW perform >2x better than BFW.

D. Summary of comparison.

Throughput. OFW and OGW exhibits >2 times lookup

throughput compared to CFW and CGW. In other cases,

the throughput of OFW and CFW are similar. The lookup

throughput of BFW is < 10% compared to the other two.

Memory footprint. (Evaluated and compared in Section

V-D) When alien addresses are not a concern, such as in

core switches, OFW costs the least memory. The memory cost

of CFW and BFW are similar. When we need to filter alien

addresses, such as on gateway switches, the memory cost of

OFW is higher than that of CFW or BFW.

Incremental update. OFW and CFW can perform > 10M

updates per second, while BFW is much slower than them.

VIII. INSIGHTS AND DISCUSSION

Design consideration by network operators. For networks

using name-based forwarding, there are two types of for-

warding nodes: gateway nodes and core nodes. On gateway

nodes, CFW provides the lowest false positives rates given

the same memory budget. Hence, CFW and potentially other

Cuckoo variants in future are ideal design choices for gateway

nodes. On core nodes, false positives are not a consideration.

OFW provides the highest throughput and lowest memory

cost compared to other solutions. Hence, OFW and poten-

tially other Othello variants are ideal design choice for core

switches/routers. In all situations studied in this paper, BFW,

the Bloom filter based solution, is not the best choice.
Further optimization. From the results, the performance of

Cuckoo Filtable downgrades dramatically compared to Cuckoo

hashing. Design optimizations are possible but hard. It is

difficult for a Cuckoo hashing based FIB to store a small

number of addresses to achieve memory efficiency while

avoiding valid key collisions, which lead to key shadowing

described in § IV. The implementation of collision avoidance

sets at Level 1 of CFW FIB can be further improved because

we store full keys in the sets instead of memory addresses of

the keys, which may waste memory and in turn downgrade the

construction performance. An adaptive Cuckoo filter (ACF)

[33] is a filter for approximate membership queries, rather

than a key-value lookup table that can be used for forwarding.

It costs more space to resolve false positives, and it cannot

avoid valid key collisions which lead to key shadowing.

IX. CONCLUSION

This work provides a comprehensive study of redesigning

DCSes for packet forwarding with network names in multi-

ple network models. By utilizing the programmable network

model, we propose new forwarding structure designs based

on three representative DCSes: BFW (based on Bloom filter),

CFW (based on Cuckoo hashing), and OFW (based on Othello

hashing). They improve existing non-programmable-network

methods by a big margin in both memory efficiency and

control plane scalability. The analytical and experimental

comparison among these three methods reveals that CFW and

OFW fit various network setups that can be chosen by network

operators, while BFW may not be ideal in most cases.
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