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Abstract— We propose to study mobile object tracing, which
allows a mobile system to report the shape, location, and
trajectory of the mobile objects appearing in a video camera
and identifies each of them with its cyber-identity (ID), even
if the appearances of the objects are not known to the system.
Existing tracking methods either cannot match objects with their
cyber-IDs or rely on complex vision modules pre-learned from
vast and well-annotated datasets including the appearances of
the target objects, which may not exist in practice. We design
and implement TagAttention, a vision-RFID fusion system that
achieves mobile object tracing without the knowledge of the
target object appearances and hence can be used in many
applications that need to track arbitrary un-registered objects.
TagAttention adopts the visual attention mechanism, through
which RF signals can direct the visual system to detect and
track target objects with unknown appearances. Experiments
show TagAttention can actively discover, identify, and track the
target objects while matching them with their cyber-IDs by using
commercial sensing devices in complex environments with various
multipath reflectors. It only requires around one second to detect
and localize a new mobile target appearing in the video and keeps
tracking it accurately over time.

Index Terms— Radio-frequency identification (RFID), sensing,
mobile tracing, perception fusion.

I. INTRODUCTION

AS THE key components of the Internet of Things
(IoT), many moving objects (the ‘Things’) carry their

cyber-identities (IDs) such as unique sequence numbers or net-
work addresses. We study the mobile object tracing problem,
which allows a mobile system to report the shape, location, and
trajectory of the mobile objects appearing in a video camera
and identifies each of them with its cyber-ID, even if the
appearances of the objects are not known to the system. Mobile
object tracing is one essential problem of mobile computing
with emerging applications such as cashier-free stores (identify

Manuscript received December 24, 2019; revised August 30, 2020; accepted
January 9, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor M. Li. Date of publication January 26, 2021; date of current version
April 16, 2021. The work of Xiaofeng Shi, Haofan Cai, Minmei Wang, and
Chen Qian was supported in part by the National Science Foundation under
Grant 1717948, Grant 1750704, and Grant 1932447. The preliminary version
of this article appeared at the IEEE 27th International Conference on Network
Protocols (ICNP), 2019. (Corresponding author: Xiaofeng Shi.)

Xiaofeng Shi, Haofan Cai, Minmei Wang, Baiwen Huang, Junjie Xie,
and Chen Qian are with the Department of Computer Science and
Engineering, University California Santa Cruz, Santa Cruz, CA 95064 USA
(e-mail: xshi24@ucsc.edu; hcai10@ucsc.edu; mwang107@ucsc.edu;
bhuang21@ucsc.edu; jxie29@ucsc.edu; cqian12@ucsc.edu).

Ge Wang is with Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
gewang@xjtu.edu.cn).

Digital Object Identifier 10.1109/TNET.2021.3052805

and track the customers and the merchandise in their shopping
carts), autonomous cars (identify other vehicles and traffic
signs), electronic article surveillance (EAS), virtual/augmented
reality, TV motion sensing games, and lost child/object search-
ing. In most of these applications, the appearances of the
objects (customers, merchandise, vehicles, lost objects) may
not be known in advance to the system, or the objects are of
a huge variety whose appearances are too many to learn.

Mobile object tracing requires the following specific tasks.
• Object detection: detect each mobile object from the

video frames and highlight its shape and boundary.
• Identify matching: match each mobile object with its

assigned cyber-ID.
• Movement tracking: obtain the location and moving tra-

jectory of each target object.
These tasks have been individually studied in many areas

including computer vision, wireless sensing, and human com-
puter interaction. For example, computer vision may be able
to segment a moving object from video frames – most of these
methods require the object’s appearance is pre-registered and
learned. However, computer vision provides no information
about the cyber-ID. Wireless sensing methods can tell the
cyber-IDs of the objects in an area but their appearances and
detailed behaviors are not known. However, combining these
two types of methods and achieving fast speed, cost efficiency,
and accuracy are still challenging, especially in many appli-
cations where the appearances of the moving objects are not
known in advance.

Computer vision is a powerful tool for object classifica-
tion [22], detection [34], segmentation [18], and tracking [44]
from images and videos. Most modern computer vision meth-
ods can effectively detect and track objects only if the object’s
appearance is pre-registered [1], [44]. For example, a com-
prehensive and annotated data set is usually required to train
these learning models. In addition, these vision based methods
can only classify the arbitrary objects with their categorical
labels, while they cannot process any cyber-ID information
and identify objects with similar appearances. On the other
hand, tracking approaches based on RFID can only estimate
the coarse location of objects as wireless signals are much less
robust to the environmental noises (such as device deviations
and unanticipated reflectors) [7], [9], [16], [17], [41], [46].
Thus, they fail to precisely localize the targets and report the
object appearances (such as shapes and edges).

An intuitive solution is combining computer vision and
RFID technologies to simultaneously obtain the location of
the target objects from the visual channel and the identities
from the wireless channel [11], [24], [25], [31], [45]. However,
existing vision-RFID fusion methods cannot achieve mobile
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object tracing with zero human’s assistance. They all require
to pre-learn the appearances of the objects, either from a vast
and well-annotated dataset that describes the target objects or
from users’ annotation when the targets initially appear in the
scene. If the object appearances are unknown, these solutions
are NOT able to detect and track the objects from the video and
match them with their cyber-IDs. In fact, in many applications
the system does not know the appearances of the target objects
in advance.

In this paper, we argue that the wireless communication
between the target and the reader through the RF channel
can essentially assist the visual channel to actively find the
target mobile object without knowing the objects’ appearance.
We consider the raw visual sensing information (such as video
frames obtained from cameras) as the bottom-level information
and the abstraction of the objects (such as their cyber-IDs
and coarse motion trajectories which can be obtained from
the RF channel) as the top-level information. We propose
the TagAttention, which adopts the “bottom-up” and “top-
down” visual attention model to fuse the visual and wireless
sensing channels for mobile object tracing. The “bottom-up”
visual attention model predicts the optical flows (patterns of
apparent motion of the objects) from the RGB frames and
the “top-down” step detects, segments and tracks the visual
regions by matching the motion of targets in the video with
the tag IDs and wireless channel information. The intention
to use attention model in our framework is that physical
layer properties of wireless signals, such as signal phases,
can “direct” the vision model to focus its attention only to
the moving targets. TagAttention could automatically detect,
localize, and identify any tagged object in the video when
it appears in the camera and then keep tracking it. It only
requires around one second to detect and localize a new mobile
target appearing in the video and keeps tracking it accurately
over time. To our knowledge, no prior method can achieve
this task.

In summary, the main advantages of TagAttention include:
1) It can actively discover rigid tagged mobile objects
and automatically track them without pre-knowledge of the
objects’ appearance, hence it requires zero human’s assistance
to label visual data; 2) It is fast and cost-efficient; 3) it does
not need manually annotated datasets for training; 4) it uses
only commercial off-the-shelf (COTS) devices for sensing and
no hardware-level modification is required; 5) it works well
in complex and dynamic environments with many multi-path
reflectors.

The balance of this paper is summarized as follows. Sec. II
presents the related work. Sec. III illustrates the design of
TagAttention. In Sec. IV we present the primary evaluation
results, and in Sec. V we further analyze the system with
empirical studies. The limitations of the system are discussed
in Sec. VI. We conclude the paper in Sec. VII.

II. RELATED WORK

A. Localization Based on RFID

Recent RFID research uses physical layer properties of the
back-scatter RF signals to localize the RFID tags. The those
physical properties typically include received signal strength
(RSS) [5], [50], signal phase [26], [27], [36], and angle of
arrival (AoA) [43], [51]. However, the accuracy of these
methods usually suffers from the multi-path effect caused
by destructive reflectors in the environments. In addition,

many methods [27], [30], [39] require the RFID tag to be
static for a few seconds so that plenty of signal samples
are collected for statistical analysis, which makes real-time
tracking of the tags in a mobile and dynamic scenario
challenging. Meanwhile, the initial measurement bias cause
by RFID readers and tags, such as the signal phase bias,
usually needs to be carefully measured or canceled before
data samples are recorded [27], [43]. Recent studies achieve
sub-centimeter localization accuracy by manipulating the radio
signals with multiple Universal Software Radio Peripherals
(USRPs). For example, TurboTrack [28] estimates the RF
signals in much wider bandwidth to reduce the impact of
environmental reflectors. However, these methods can hardly
be compliable with commercial off-the-shelf (COTS) RFID
readers.

In TagAttention, since we can adopt vision as an additional
channel which provides plenty of spatial information of the
target we want to trace (although with vision alone we do not
know exactly the tracing target), the system does not demand a
precise localization performance using the RF signals. Hence,
the system does not rely on the self-defined radio signals and
can be easily implemented with most commercial RF readers
and 3D cameras.

B. Visual Tracking Systems

Object tracking in computer vision research is usually
defined as predicting bounding boxes for certain objects in
every video frame. One category of the solutions uses corre-
lation filters, such as MOSSE [2] filter. More recently, the tar-
get patch searching can be accomplished in an end-to-end
manner by deep neural networks [23], [48]. Another type
of methods utilize the motion information in spatio-temporal
context [44] or optical flows [6] of the video, which can also
be learned through DNNs. The third type adopts the tracking-
by-detection strategy to track specific objects, such as human
bodies [14], [15].

However, all the above methods require either a large
well-annotated dataset to train their models, or users’ initial
annotation to tell the model what to track, or both. Actively
finding and identifying the targets that are not registered or
learned by the models remains unsolved.

C. Vision-RFID Fusion

In recent years, attempts have been made to fuse vision
and RF signals so that the systems can both track and
identify mobile targets by matching the information from both
channels [11], [12], [24], [25], [31], [45]. Mandeljc et al. [31]
propose to detect and track anonymous humans from videos
with Probabilistic Occupancy Map (POM) algorithm, and then
identify the individuals by matching the IDs in RF-channel to
the detected human instances based on the location informa-
tion. ID-Match [25] is a novel vision-RFID fusion system for
human identification from a group through an RGB-D camera
and an RFID sensor. However, both of the above-mentioned
methods rely on the human detection or human pose estimation
module accomplished by specifically-trained computer vision
models. Therefore they cannot be used to identify objects other
than humans.

Beyond tracking and identification of humans, TagVi-
sion [11], [12] fuses signals of RFID tags on objects and 2D
surveillance video by calculating probabilistic matching scores
of the signal phases and object motions. However, the vision

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 22:08:00 UTC from IEEE Xplore.  Restrictions apply. 



892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 1. Overview of TagAttention. The system is mainly comprised of the bottom-up and top-down attention modules.

model is hard to be applied in complex 3D scenarios: it can
only track objects on a static 2D plane by which the camera
model is calibrated. A recent work proposes IDCam [24],
which fuses RFID and 3D camera to trace a tagged item that is
held by a user’s hand. The system requires a precise detection
of the user’s gestures, which is accomplished by a care-
fully tuned visual detection and tracking module. In addition,
TaggedAR [45] is proposed to detect and identify stationary
objects by rotating the sensors and pairing RF-signals with
the depth of the target objects. However, the system discards
the informative object descriptions from the visual intensity
channels and simply segments objects from the background
based on depth histogram, which significantly reduces the
robustness of the system in complicated scenarios.

Existing fusion solutions cannot achieve tracing
arbitrary mobile objects in 3D space. They either only
trace particular targets (such as a human body) with
sophisticated models or trace objects on a calibrated 2D
plane. They cannot identify and track objects with unknown
arbitrary appearances in complex 3D environments, which is
our design objective of this work.

III. DESIGN OF TAGATTENTION

A. Overview

In TagAttention, we use a commercial RFID reader carrying
one antenna and an RGB-D camera on top of the antenna to
capture the sensing data. In addition, each tracing target carries
an RFID Tag that can be read by the RFID reader through
the antenna. Fig. 1 shows an overview of our attention-based
fusion system. The inputs of our fusion model are the RGB
intensity and distance maps (each pixel of the distance map
represents the distance from the 3D voxel to the sensor origin)
captured by the RGB-D camera, and the RFID EPCs (denoting
the cyber-IDs of the objects) and their corresponding phase
signals obtained by the RF reader.

We consider the raw video inputs as the bottom-level
information and the abstraction of the objects (such as their
cyber-IDs and motion trajectories) as the top-level information.
Given two consecutive RGB frames, the bottom-up visual
attention mechanism estimates the pixel-level optical flow
to measure the motions of pixels from the visual frames.
Since the produced optical flow can highlight moving pixels
from raw video, it works as a bottom-up visual attention
mechanism [8], where the system naturally notice the salient
visual components of potential importance from visual inputs.

Meanwhile, the top-down visual attention module in
TagAttention functions as a detector of the targets given the

RF signals that match the visual targets. In the top-down
attention module, we obtain the consecutive distance by
unwrapping the phases of RFID tags, and map it with the
per-frame optical flows. By combining the bottom-up and top-
down modules together, we can obtain an attention map for
each timestamp, which represents the pixel-level consistency
between the motion trajectories in the video and the distance
changing of the RFID tag. The attention map is a 2D matrix
with the same size as the video frame resolution, in which
each element represents the magnitude of attention (measured
by the probabilistic matching score of the two sensing channel
in our design) on the corresponding image pixel.

Finally, a tracker is designed to actively discover the target
objects and output their corresponding shape and location
(represented by a pixel-wise mask for the object, we use
‘mask’ in the following) from the video based on the per-frame
attention maps.

Compared to the existing fusion methods, TagAttention
can actively highlight ubiquitous target objects in a video
without any pre-knowledge of the object’s appearance. Thus,
this tracing model can be applied on a much wider variety
of visually-complex scenarios in which target objects are not
visually pre-registered.

B. RF Signal Preprocessing

In TagAtthention, the RFID tags are matched to the objects
in the video through the correlation of the motion trajectories
of the objects. The distance L from the reader antenna to the
tag can be calculated as follows:

L =
φL · c
4πf

, (1)

where φL represents the corresponding phase change over the
signal travel distance, c is the speed of light and f is the
signal frequency (equals to 920MHz for our reader). Note
that with the current COTS devices, we can not calculate
the exact distance of the tag. There are two reasons. One
is that in addition to the phase φL over distance, both the
reader and tag’s circuits will introduce some additional phase
rotations to the received phase φ, i.e., φ = (φL + φR + φT )
mod 2π, where φR and φT are the additional phases of the
reader and tag respectively [13], [19]. Another reason is that
our commercial RFID reader (ImpinJ R420) also introduces π
radians of ambiguity. In other words, the reported phase can
either be the true phase or the true phase plus π radians [19].
Hence for our reader, φL = nπ + φ − (φR + φT ), where n
is a non-negative integer. Since φR and φT are constant over
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Fig. 2. RF phase signal preprocessing and the relative distance trajectory.

the whole reading period, to estimate the motion of the tag
over time, we only consider the relative distance changes of
the tag, i.e.,

ΔL = L − L0 =
(Δnπ + Δφ) · c

4πf
, (2)

where L0 is a reference distance which can be set as the first
calculation. And Δn = n − n0 and Δφ = φ − φ0. After this
step, we can obtain a relative moving distance of the tag, ΔL,
which only related to the changing positions.

To extract the motion trajectory of the objects,
we conduct two signal processing progress, namely phase
de-periodicity [4] and motion smoothing. As illustrated as
the black plus sign in Fig. 2 (A), the received phases are
wrapped over cycles and fall into the range of 0 to 2π.
This characteristic of the phase values makes the motion
estimation discontinuous. Hence we first unwrap the received
phase values and retrieve the consecutive motion profile.
In our design, we adopt two thresholds, th1 = 0.5π and
th2 = 1.5π, to detect the π and 2π hops. Specifically, let
Δφt1,t2 = |φt2 − φt1 | represent the difference between two
adjacent phases φt1 and φt2 . The latter phase value φt2 will be
added or subtracted by π if th1 < Δφt1,t2 � th2, and by 2π
if Δφt1,t2 > th2. The performance can be found in Fig. 2 (A).

We also consider the motion smoothing to get rid of the
environment and device noises. Since the received phases can
be easily impacted by outside environments and equipments,
it is hard to tell whether a hop between adjacent received
phases is caused by the π or 2π phase wrapping, or by a
sudden movement of the object, or by insufficient reading.
Hence, we further smooth the phase based on the estimated
acceleration of the moving object. The main idea is based on
an observation that the rapid and sudden change of velocity,
which requires a huge force acting on the object, is unlikely
to happen in most real applications. Thus, we calculate the
average velocities and accelerations of the object within the
reading time slots after de-periodicity. If the acceleration of
the object in a certain time slot is higher than a threshold,
i.e. the gravity acceleration g ≈ 9.8m/s2, we consider the
high acceleration is caused by the inappropriate de-periodicity
or other environmental noises. To smooth the motion of the
objects in such case, we keep the average velocity v̄t0,t1
in previous time slot constant for the next time slot and
approximate the gain of distance at t2 by (t2 − t1)v̄t0,t1 .
A smoothing result is shown in Fig. 2 (B).

C. Channel Synchronization

The fusion of the RFID and Vision channels requires the
synchronization of two-channel data samples. When collecting

Fig. 3. Channel synchronization and sensing data Sampling.

the data from the two channels, we use the operating system’s
clock to generate a timestamp signature for each of the RFID
phase sample and video frame.

When there are multiple targets and interference RFID tags
in the same scene, the phase sampling rate of each RFID
tag becomes rather non-uniform. First, due to the uncertainty
in slotted ALOHA protocol, we cannot predict which tag
will respond and occupy the next slot. Second, since most
of our experiments are conducted in a noisy environment
and the target object is placed at a relatively long distance
(2 to 5 meters) from the antenna, many packets carrying the
target tag information may get lost during transmitting. There-
fore, to synchronize the two channels, we use the timestamps
of Kinect data as the timestamps for channel fusion. Then
as shown in Fig. 3, the tag distance trajectory obtained from
the RFID channel (as shown in Fig. 2) is interpolated and
resampled to match each Kinect frame. Specifically, we use
polynomial interpolation in our implementation.

D. Bottom-up Attention Module

In TagAttention, the bottom-up attention module captures
the salient visual features through the optical flow, i.e. the
motion of pixels in two consecutive video frames at t and
t + Δt. The optical flow will be used to warp1 the video
distance maps and propagate the predicted attention maps over
frames.

In our framework, we learn the optical flow through an end-
to-end deep neural network, which has been proved to be both
more effective and efficient [10], [32] than traditional methods.
Specifically, we adopt the FlowNet [10] as the backbone
neural network architecture and the training strategy presented
by [32] to train the neural network in an unsupervised manner.

By feeding the consecutive video frame pairs Ft1 , Ft2 into
the FlowNet, the model predicts the optical flow map ft1→t2 =
{(Δx, Δy)}(x,y). The estimated optical flow naturally high-

lights the pixels on moving objects from the image frames,
which works similarly as a visual bottom-up attention mecha-
nism to notice the mobile objects. In addition, the optical flow
will be further used to warp the distance maps and propagate
the predicted attention maps over frame timestamps. Note that
the FlowNet can be replaced with any optical flow model that
yields better accuracy.

1In this paper, warping stands for forward warping with the optical flow.
Namely, we move each pixel of the current frame in the image plane according
to the pixel velocity, such that we can reconstruct a “virtual” frame for the
next timestamp.
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Fig. 4. (A): Samples of the anchors in an example video frame. (B): The corresponding motion map of the frame in (A) (window size = 5). (C): The motion
trajectories of the anchor points: Pixel #1 and #2 are the target anchor pixels, while the rest are random anchor pixels. (D): The generated attention heat map.

E. Top-Down Attention Module

1) Motion Estimation: In the top-down attention module,
TagAttention finds and highlights the target objects’ pixels
by matching the motion of each pixel in the visual system
with the distance changes measured by the RF phase and
calculating their correlation probabilistic scores. To estimate
the pixel-level motion (the moving trace of each pixel in
Kinect frames), we warp the distance maps Dmap with the
optical flows frame by frame and obtain the motion maps
Mmap. In Mmap, each pixel denotes the distance trajectory
(represented by a vector) of the invariant real-world voxel
in 3D space. Specifically, let d0, d1, . . . , dt ∈ Dmap represent
distance maps from the first frame F0 to the current frame Ft,
and f0→1, f1→2, . . . , ft−1→t ∈ Flowmap represent the optical
flows of the RGB video. We warp Dmap with Flowmap to
estimate the motion maps Mmap. Let m

ti,...,tj

tj
be a instance of

Mmap on frame tj . The size of m
ti,...,tj

tj
is H×W×(tj−ti+1),

where H and W are the height and width of the video frames,
and the third dimension is the time channel from ti to tj . Then
m

ti,...,tj

tj
can be calculated as Eq. 3:

m
ti,...,tj

ti
= ((((dti ⊗ fti→ti+1) ⊕ dti+1) ⊗ fti+1→ti+2)

⊕dti+2 · · · ⊗ ftj−1→tj ) ⊕ dtj , (3)

where ⊗ represents the warping process with optical flow
over all channels of the third dimension of the matrix, and ⊕
represents concatenating of two maps along the third channel
(i.e. the time channel).

Meanwhile, the RFID reader collects the RF signal for each
tag idk during ti to tj , and the signals are converted into
relative distance vectors rd

ti,...,tj

id1
, rd

ti,...,tj

id2
, . . . , rd

ti,...,tj

idn
∈

RDti,...,tj . We then match the moving pixels with the RF
tag by calculating the correlation probabilistic scores between
the motion map m

ti,...,tj

tj
and the RF distance vector rd

ti,...,tj

id .
Fig. 4 presents an example. As shown in Fig. 4, (A) shows
an RGB frame at time t5, and (B) represents the motion
map mt1,...,t5

t5 over five timestamps from t1 to t5 (≈ 150ms)
computed by Eq. 3. In Fig. 4 (A), we arbitrarily sample
a few pixels as random anchors and illustrate their motion
trajectories in (C). As a comparison, we also label two pixels
(denoted by red and green) on the target object as target
anchors in m

ti,...,tj

tj
and show their estimated relative distance

vectors as well over time in (C).2 In addition, the motion
estimated by RF channel rdti,...,tj is also plotted with the
black line in (C). To eliminate the overall bias caused by the

2Note that the anchors are artificially selected only for the visualization and
illustration purpose.

π or 2π rotations of RF signal phases, the motion vectors
are translated so that the initial relative distance of motion
trajectory in the window is 0, namely, for each timestamp tk
within [ti, tj ], m̂tk

tj
= mtk

tj
− mti

tj
and r̂d

tk

idn
= rdtk

idn
− rdti

idn
.

Hence, we obtain the unbiased motion map m̂
ti,...,tj

tj
and RF

motion vectors R̂D
ti,...,tj

for comparison and matching (as
shown in Fig. 4 (C)). From Fig. 4 (C), we notice the motions of
the two anchor pixels located at the target object in the motion
map match well to the motion of the RFID tag estimated by
RF signals, while other random anchor pixels fail to match.

Ideally, the motions of the pixels on a rigid target in
the unbiased motion map m̂

ti,...,tj

tj
from the visual channel

should perfectly match with the unbiased motion vector of the
corresponding RFID tag, since they all measure the relative
distance from the anchor point of the object to the sensors
within timestamp ti to tj in the physical 3D space. However,
both measurements could be inaccurate, causing the possible
misalignment of the two traces. For example, in the visual
channel, error exists when warping the distance map as the
optical flow may not be perfect; while in the RF channel,
the error can be caused by multi-path, random Gaussian
noise, low sampling rate and inappropriate De-periodicity.
Nevertheless, the tendency of the motions in two channels
can match in a long term, as all these noisy factors only
cause random and temporary impact on the signals. Hence,
we introduce an attention mechanism AttRF , which is robust
to the temporary and random noise, to measure the correlation
of the motions in different channels.

2) Attention Mechanism: The proposed attention mech-
anism AttRF is comprised of two attention components:
1) Attrbf , which uses an radial basis function (RBF) kernel
to measure the similarity of the motion vectors in Euclidean
space; 2) Attcorr, which measures the correlation coefficient
of the motion vectors. To calculate the attention scores, we first
reshape m̂

ti,...,tj

tj
into

{
ρ

ti,...,tj

(h,w)

}
H×W

, with each element

ρ
ti,...,tj

(h,w) representing the motion vector from ti to tj of each

pixel p(h,w) in the motion map m̂
ti,...,tj

tj
. Then the pixel-level

attention mechanism can be formulated by Eq. 4 and Eq. 5.

Attrbf = exp

⎛
⎜⎝−

∥∥∥ρ
ti,...,tj

(h,w) − r̂d
ti,...,tj

idk

∥∥∥
2

2α

⎞
⎟⎠ , (4)

Attcorr = Relu

⎛
⎝ cov(ρti,...,tj

(h,w) , r̂d
ti,...,tj

idk
)

σ(ρti,...,tj

(h,w) )σ(r̂d
ti,...,tj

idk
)

⎞
⎠ , (5)

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 22:08:00 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: TagATTENTION: MOBILE OBJECT TRACING WITH ZERO APPEARANCE KNOWLEDGE BY VISION-RFID FUSION 895

where we use the rectifier activation function Relu(x) =
max(0, x) to suppress negative correlations, α is the RBF
kernel parameter, cov(·) represents the covariance of the
two vectors and σ(·) represents the variance of the vector.
To combine the two types of attention mechanism together,
we used Eq. 6, which calculates the weighted sum of the two
attention scores.

AttRF = βAttrbf + (1 − β)Attcorr, β ∈ [0, 1] (6)

We empirically set α = 5 × 10−4 and β = 0.8 in our
implementation. According to the formulas, AttRF is in the
range of [0, 1]. Hence we approximately consider AttRF to
describe the probability that the pixel (h, w) at timestamp tj
matches with the target object that is labeled by a certain RFID
tag. Thus, for each target object, we construct the attention
map matrix at, which is of the same size as the input image
matrix. Each element in at represents the attention probabilis-
tic score AttRF of the corresponding pixel. Fig. 4 (D) shows
an example of the attention map with a heat map.

F. Attention Propagation

The top-down attention module enables the system to
predict an attention probabilistic map for each video frame.
However, the prediction can be accurate only when the target
objects move during the attention window, since we assume
the top-down attention is triggered based on the movement of
the targets. When the target object is static, the distance values
of the object pixels keep unchanged in the RGB-D camera.
However, due to the dynamical factors of the environment
(such as the movement of other objects), the phase values
of the corresponding tag may still subtly change over time.
In such case, the noise of the environment dominates the
attention probabilistic scores of the pixels according to Eq. 4
and Eq. 5. In addition, distance measurement or localization
of objects through RF signals within a pixel level error bound
(about several millimeters) is rather challenging [3], [7], [29],
[42], [49], especially when using commercial RFID readers
and a single antenna in our system [33], [35], [36], [39],
[41], [47]. Therefore, it is nearly impossible to precisely match
every pixel with the corresponding RF signals based on the
relative motion at a single frame. Fortunately, the visual chan-
nel provides tremendous semantic information of the target
objects and the environments, which enables us to track and
segment the target objects cross multiple timestamps based on
the correlation of objects’ appearances. Though there maybe
some mismatches at a few frames, the overall trend of motions
of the two channels can finally match with each other in a long
term.

Hence, in order to improve the robustness of our tracking
system, we propose an Attention Propagation mechanism as
illustrated in Fig. 5. The major intuition in the Attention
Propagation module is utilizing a history of the continuous
frames of the attention maps to learn the shape and position
of the target. The historical motion information of the mobile
target has been used in many existing RFID tracking systems,
for example, in TurboTrack [28], tracking a mobile RFID tag
is formulated as a Hidden Markov Model (HMM). However,
the HMM method is not a suitable solution in TagAttention
for following reasons.

First, the goal of TagAttention is tracing the target “object”
instead of the RFID tag (Existing methods consider the tag
position as a coordinate in space). Namely, TagAttention

Fig. 5. Mask propagation by warping the probabilistic maps with optical
flows over time.

requires not only estimating the motion trajectory of the RFID
tag but also detect the shape and position of the associated
target by highlighting all target pixels in video. Therefore,
it is rather expensive to form an HMM of each candidate
pixel in the video. Instead, plenty of historical information
about the target positions can be extracted from the optical
flows. Compared with HMM, the optical flows learned from
a deep neural net can estimate a pixel-level historical trace
by considering not only the spatial likelihood of the pixel
positions (given the prior positions) but also the similarity of
the visual features (such as color intensity and object edges)
between the two neighboring frames.

Thus, in the proposed Attention Propagation module,
we consider that a model based on optical flow is a more
efficient and effective method than the HMM to formulate
the historical information and trace the target. Specifically in
Attention Propagation (Fig. 5), for each target object instance
idk, we initialize the likelihood map lt0 = log at0 (log at0
represents the element-wise log operation of the attention map
matrix at0 in our notation) at the first frame Ft0 . For each
following frame Fti , we warp the likelihood map lti with the
optical flow fti→ti+1 to reconstruct the warped likelihood map
prediction at frame Fti+1 , which is denoted as l̂ti

ti+1
. Then the

likelihood map lti+1 at frame Fti+1 is calculated by Eq. 7,

lti+1 = l̂ti
ti+1

+ Θ(vti+1 − v0) × log(ati+1), (7)

where vti+1 =

�
�
�rd

ti+1
id −rd

ti+2−k
id

�
�
�

ti+1−ti+2−k
denotes the absolute velocity

of the motion of the target measured by the RF signal within
the time window in which ati+1 is computed, k is the window
size (count of the timestamps in the window), Θ(x) = 1 if
x > 0 otherwise Θ(x) = 0, and v0 > 0 represents a velocity
threshold.

In our implementation, we set v0 = 0.1 m/s, meaning the
system is only triggered by the mobile targets that move at a
temporary absolute velocity higher than 0.1 m/s. An empirical
analysis about the parameter v0 will be discussed in Sec. V-B.

G. Tracking by Attention

In the previous attention modules, only the pixels of
the target object in video frames would have consistently
high attention probabilistic score over different timestamps,
thus yielding high likelihood value in the current likelihood
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Fig. 6. CDF of the normalized probabilistic values in an example probabilistic
map pti . Blue circles represent the Conner points in the CDF plot.

Fig. 7. Mask refinement.

map lti . Therefore, we can simply use a threshold to cut
off the likelihood and segment the target in current frame
Fti . However, according to Eq. 7, the likelihood value of
each pixel keeps decreasing over time as more frames are
processed, which makes it infeasible to set a fixed cutting-off
threshold. Therefore, we design an automatic thresholding
method to segment the target from the video frames based
on the likelihood map.

Specifically, we first convert the likelihood map lti to the
normalized probabilistic map pti by calculating pti(h, w) =
elti

(h,w) in element-wise of the 2D matrix lti . Then we
normalize pti crossing all pixels using min-max normalization.
By observing the value distribution of the pixels in the
probabilistic map pti , we can easily find that the probabilistic
values are highly hierarchical: the background pixels, which
usually comprise the major regions of the frame image, have
significantly smaller probabilistic values (close to 0) than the
target objects; the“soft” body components that temporarily
move in consistency with the target rigid body would have
relatively smaller probabilistic values, and the values of these
body pixels keep decreasing when the motion consistency no
longer holds; while the target object would have consistent
highest values. Fig. 6 shows an example of the cumulative
distribution function (CDF) of the pixel values in pti . Based
on this observation, we can use multiple ways to segment the
frames according to the normalized probabilistic map, such as
value clustering or simply cutting off the CDF of the value
distribution at the “corners” (showing as a sudden change of
the gradient) on the CDF plot (as labeled in Fig. 6). In our
implementation, we choose the last corner point in the CDF
to cut-off the image to extract the target mask.

Another issue of the tracking system is that the errors in
the predicted optical flow accumulate over the warping steps,
resulting in the possible misdetection of the target after a
few iterations of attention propagation. To solve this problem,
we refine the shapes of the target masks according to the 3D
segmentation of scene based on K-means clustering [20], [38].
Fig. 7 illustrates an example of the segmentation and refine-
ment. Then the refined likelihood maps are used in Eq. 7 for
attention propagation.

Fig. 8. Deployment of sensors.

Fig. 9. Examples of target objects.

IV. EVALUATION

A. Implementation

In our experiments, we utilize a similar sensor setting as [25]
to obtain the visual frames and RFID signals. As shown
in Fig 8, a Kinect v2 camera is deployed on the top of an RFID
antenna. The antenna is connected to a commercial RFID
reader ImpinJ R420. We choose the center of the antenna as
the origin O of 3D localization reference system and measure
the coordination (ΔX, ΔY, ΔZ) of the depth sensor on the
Kinect. Thus, the XY Z 3D point cloud in Kinect reference
system could be translated by (ΔX, ΔY, ΔZ) to obtain the
coordination of pixels in the RF reference system.

In our implementation, the FlowNet [10] module for optical
flow estimation is implemented with Tensorflow, and we used
the loss functions and parameter settings suggested by [32] for
training. The neural network is first pre-trained on the synthetic
dataset FlyingChairs [10] without using the ground truth data,
then fine-tuned on Kinect video frames collected arbitrarily
in dynamic environments. The Top-down attention module is
also implemented jointly with FlowNet in Tensorflow, but no
training is required for this part. The whole system is tested
with one Titan X GPU and 8 vCPUs @ 2.6 GHz. Without
any decent optimization in the implementation, the average
overall processing time for each video frame is around 95ms,
which demonstrates the potential of the proposed method to
be applied to online tracking systems.

B. Experiment Setup

To evaluate the performance of the tracing system, we ask
2 volunteers to move everyday objects continuously with
arbitrary traces in front of the sensors. Examples of the objects
that we tested are shown in Fig 9. The objects tested are of
different shapes, sizes, materials and textures. We stick an
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Fig. 10. The petracing. Panel (A) and (B): Average IoU (A) and CLE (B) of
each tested target object.

RFID tag on each of the objects. When collecting sensing data,
the Kinect records the RGB image frames and 3D coordination
of the pixels. Meanwhile, the RFID reader records the tag
EPCs (considered as the cyber IDs of the targets) and phase
information.

Tracing cases: We consider two tracing cases in our
evaluation, namely single moving target tracing and multiple
moving targets tracing. In the single moving target tracing
case, we conduct the experiments in two totally different
environments. One is in a relatively static meeting room
with several furniture (e.g., tables and chairs) in it. In this
environment, we test tracing of 5 different objects and repeat
for 4 times for each object. Besides, to investigate the impact
of noise factors such as multipath effects of the RF signals,
we also evaluate our system in a noisy and crowded office
room, which has narrow open space, multipath reflectors
(tables, chairs, cubicle walls), metal and electronic furniture
(cabinet, servers, workstations), various wireless signals (WiFi,
LTE), and magnetic fields (whiteboard) in it. We also ask
another volunteer to keep walking around to make some
dynamic noises. The experiment in such scenario is repeated
for 5 times.

We also evaluate the system for tracking multiple moving
targets and assign the correct ID to each of them in a noisy
environment (the office room scenario). Some of the tested
targets are of the similar appearance. Thus, a pure vision-based
detection system cannot distinguish them.

C. Evaluation Metrics

We use the Intersection over Union (IoU) and Center
Location Error (CLE) to evaluate the tracing performance. IoU
is calculated as Eq. 8:

IoU =
S(Bt ∩ Bp)
S(Bt ∪ Bp)

, (8)

where Bt∩Bp and Bt∪Bp represent the intersection and union
of the ground truth bounding box Bt and predicted bounding
box Bp of the target object in video frames respectively, and
S(X) represents the area of the region X . CLE measures the
Euclidean distance (in number of image pixels) between the
centers of the ground-truth bounding box and predicted bound-
ing box in pixels, compared with to the overall input/output
frame resolution 512 × 424.

D. Single Object Tracing

1) Tracing in Static Environment: Fig 10 shows the perfor-
mance of tracing single target in static scenarios. In Fig 10,

plot (A) and (B) show the average IoU and CLE metrics of
the five different target objects respectively, where the X axis
represents the timestamps of the 90 video frames, and the Y
axis represents the average IoU or CLE value.

The evaluation results in Fig 10 illustrate the process in
which TagAttention gradually and actively discover the targets
and keep tracking them over time. We find TagAttention
achieves low IoU scores and high center location errors in the
first 20 video frames (at the very beginning frames, the IoUs
are always close to 0), showing initially TagAttention cannot
track anything as it knows little information about what to
trace. This property contrasts to the existing tracking systems,
in which they find the targets’ location well at the initial stage
by human’s assistance or an object detection module that is
well-trained on large datasets to learn the target. However,
we notice the IoU score keeps increasing and the error keeps
decreasing until around the 40th frame, showing TagAttention
can gradually find the location of the targets based on the
consistency of the target motion trajectories observed from
both sensing channels. Moreover, after around the 40th frame,
TagAttention becomes confident of the objects’ location and
mask. Then it keeps tracking the objects for the following
frames, yielding high IoUs, low CLEs.

In Fig 11, we present examples of the attention heatmaps
at learned by the top-down attention module. Warmer color
in the figure represents higher attention probabilistic score.
Image regions that are not masked by the heat map have
0 attention score. The number at left-up corner of each image
shows the frame index. Due to the error factors including the
channel noise, inaccurate motion warping and multipath of the
signals, or even the negligible motion velocity of the target at
certain frames, we can find in several frames the top-down
attention module cannot always only focus attention on the
target. However, the target can always receive continuous and
stable attention from the tracer for most of the frames, enabling
TagAtthention to trace the target in a long term.

2) Tracing in Dynamic and Narrow Environments: To eval-
uate the impact of environmental noises, such as multipath
effects, to our tracing system, we conduct the tracing experi-
ments in a dynamic and crowded office room. Fig 12 shows
the performance in comparison with the tracing results of the
same target in the previous static environment.

Fig 12 (A) and (B) shows the average IoU and CLE
results respectively. From the results, we notice the tracing
performances in two different scenarios are equivalent, which
shows the system is robust to multipath of the signals. In fact,
since TagAttention only estimates the coarse motion of the
targets rather than accurate localization using the RF signals,
the system does not suffer as much from inaccurate phase
measurement. In addition, the smoothing methods introduced
in Section 3.2 to preprocess the RF signals and the mask
refinement strategies introduced in Section 3.6 also help to
minimize the impact of signal noise in real-world scenarios.

To better illustrate the actual tracing quality and investigate
where the errors come from, we show some selected tracing
results of the single object scenarios in Fig 13. Specifically,
the first row in Fig 13 shows the meeting room scenario,
the second row shows the office scenario, and the third row
shows how the system reacts with errors that occur at certain
frames. In Fig 13, the number at the left-up corner of each
image indicates the frame index in the tracing scenarios. The
IoU and CLE of the tracing performance are also presented
below each frame image. From Fig 13, we find most tracing
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Fig. 11. Examples of the attention heat maps predicted by TagAttention.

Fig. 12. Tracing performance of single target in noisy environments.

errors is caused by the ambiguous boundary between the
target and its surroundings. Since TagAttention requires no
prior knowledge of the appearance of the target, it cannot
distinguish the target and its surrounding body parts (i.e. the
hand and wrist of the volunteer) that move consistently with
the target. In these cases, the system considers the target as
well as part of its surroundings as an entire rigid body. Since
the bounding box IoU score is sensitive to the redundant
areas, especially for small objects, we observe a low IoU score
for these predictions, whereas the tracing performance is still
acceptable.

From the third row of Fig 13, we also notice that a sudden
decrease of tracing performance occurs at the 62nd frame
after TagAttention has already found an accurate position of
the targets. We find this phenomenon happens occasionally
during tracking. It is mainly caused by the flow warping error
in the tracking module of TagAttention. Usually, in such cases,
the optical flow measured by FlowNet is inaccurate at a certain
frame. Consequently, when propagating the attention maps,
the target image region “leaks the attention values” to some
irrelevant image pixels. Then in the mask refinement module,
the tracer mistakenly considers these irrelevant pixels are of
the same rigid body as the target object because these pixels
are also spatially close the target. Hence, it starts tracking
more body parts than the target rigid body (for example,
the entire human body in frame # 64 in the last row of
Fig 13). However, after a few frames, as the irrelevant body
parts move inconsistently with the target, the attention values
of corresponding pixels decrease quickly. Then the tracer can
recapture the accurate position of the target and track only the
target part (for example, the 66th and 68th frame in the last
row of Fig 13).

E. Multiple Object Tracing

TagAttention can trace multiple mobile targets simultane-
ously by their cyber IDs without introducing much extra
computation. In fact, the most computationally intensive part
in TagAttention is the optical flow module, which estimates
the optical flow map through a deep neural network. How-
ever, the optical flow of the video can be reused by any
top-down attention parts to detect and track different targets.

Specifically, when the RFID tags of multiple targets are
detected, their EPCs and the corresponding phase signals
are recorded and processed independently. After the optical
flow and the pixel-wise motion map of the video frames
are calculated, TagAttention can use these phases signals to
compute the attention values of the pixels and produce their
corresponding likelihood maps in parallel.

We evaluate the performance of TagAttention in multiple
target tracking scenarios. Fig 14 shows the average IoU and
CLE scores of different targets in the two-object tracing sce-
narios. From Fig 14, we find the performance of TagAttention
for each individual target is similar to the single object tracing
cases. Specifically, the tracer takes less than 35 frames to
discover the accurate location of each individual targets and
keep tracking them for the following frames.

In addition, we show some selected tracing frames of
two-object and four-object tracing scenarios in Fig 15. At the
5th frame, the tracer cannot recognize and detect any targets.
After more motion data is collected, TagAttention produces
fine-grained bounding box and segmentation mask for each
target, and labels the targets by the corresponding tag IDs.
Especially in the four-object scenarios, we find the system
can distinguish the two cylindrical bottles (ID_2 and ID_3)
by their IDs, even though the two bottles are very similar in
appearance.

V. SYSTEM ANALYSIS AND DISCUSSION

A. Impact of Moving Speed

To evaluate the impact of the moving speed rate of the
target, we design the following human tracing experiment: the
volunteer who wears the RFID tag walks toward the sensors
in the crowded office room at different levels of speed rates
(the average speed rates are about 2m/s, 1.3m/s, 0.8m/s,
0.5m/s respectively). Different from previous works [25], [45]
that fuse RF signal and vision to track humans, our system
does not rely on any human detection module (which requires
extensive training) to localize humans in videos. Fig. 16 shows
the tracing performance. From the results, we can see for all
speed rates, the system finds and keeps tracking the target
stably after around 25 frames. We also notice the system can
react faster to the high-speed targets, since in these cases the
changes of RF phase signals as well as the speed of the target
are significant, hence yielding high correlation between the
two channels. As a contrast, if the target remains static (the
relative speed rate to the sensors is 0), the system can hardly
detect the target.

B. Impact of Velocity Threshold

In TagAttention, we use v0 = 0.1 m/s as the minimal
relative velocity to trigger the matching of the signals from
the two channels (Eq. 7). Note this parameter is fixed for all
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Fig. 13. Examples of single object tracing results.

Fig. 14. Tracing results of the two-object scenarios.

above experiments and is empirically selected based on the
measurement accuracy of our sensors used in the experiments.
In order to illustrate how this parameter impacts the tracing
performance, as well as to provide intuition regarding how to
set this parameter when using different devices, we present
the IoU scores of the tracing system with respect to different
v0 settings in two different scenarios, as shown in Fig. 17.

During the first scenario (the left plot in Fig. 17), the target
is static at the beginning and speeds up to around 0.5 m/s,
while in the second scenario (the right plot), the target speeds
from static to around 2.5 m/s. From the first scenario, we can
see the system with smaller v0 reacts faster, i.e., the IoU
score starts increasing at earlier stage of the motion. At this
stage (from frame No. 5 to No. 15), the velocity is relatively
small and the system with smaller v0 is more sensitive to the
slow target. However, when the threshold v0 is set too large
(i.e., 0.5 m/s), since for the most time of the motion, the target
is slower than v0, the system cannot detect the target at all in
those frames. For the second scenario, on the other hand, since
the target moves faster than 0.5 m/s for most frames (except
the first 15 frames when the target is static), all systems can
successfully detect the target within a short latency.

Therefore, in order to reduce the latency of the detection and
make use of the maximum number of effective frames during
the tracing, v0 should be set as small as possible. Ideally,

with “perfect” sensors that can measure the relative distance
accurately in the system, v0 should be set as 0 to achieve
the best performance. However, the commercial sensors we
adopt in our experiments can introduce tremendous noise in
the sensing data, such as RF phase and depth.

As shown in the first scenario of Fig. 17, although the
system with v0 = 0.01 m/s reacts slightly faster than the one
with v0 = 0.1 m/s, the overall tracing accuracy is worse than
the v0 = 0.1 m/s setting. The reason is that for a few certain
frames when the target is static or moves slow, the noise in the
measurement dominates the changes of RF phase compared
with the impact of target velocity. Consequently, for those
frames, the attention map computed by Eq. 6 mainly reflects
the signal noises rather than the motion of the target. Hence,
in practice, we set a larger v0 (i.e. 0.1 m/s) to filter out those
frames for the optimal overall performance. As a comparison,
in the second scenario, we find the impact of v0 is much
smaller, because the signal noise is neglectable when the target
moves fast.

The evaluation result in Fig. 17 suggests us to select v0

according to the following principles: (1) Choose v0 as small
as possible. (2) v0 cannot be too small such that the signal
noise becomes a significant part of the phase change in the
effective frames. (3) It is easier to find an optimal v0 when
the target moves faster. (4) If the application scenario requires
to detect slow targets, more accurate sensing devices are
necessary.

In addition, we find the following major factors in practice
that impacts the velocity measurement accuracy of the RFID
reader. (1) manufacture of the RFID reader and tag. (2) signal
strength of the antenna, which effects the sampling rate of
the target tag. (3) number of the concurrent tags in the
environment, which also effects the sampling rate of target.
(4) distance of the tag and other dynamic factors in the
environment.

C. Impact of Illumination

In this section, we show how the system performs under
different illumination conditions. We conduct a comparison
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Fig. 15. Examples of multi-object tracing.

Fig. 16. Tracing performance at different levels of speed rates.

Fig. 17. Impact of parameter v0.

experiment under three different illumination conditions: suf-
ficient illumination, moderate illumination, and limited illu-
mination. The sufficient illumination scenario is similar as the
scenario presented in Fig. 15, while the moderate illumination
and limited illumination scenarios are presented in Fig. 18. In
the moderate illumination scenario, only some nature lighting
through the shutters is allowed in the office. In the limited
illumination scenario, the target and the volunteer are almost
unseen from the video. With less illumination, the Signal-
to-noise ratio (SNR) of the video becomes smaller, which
may impact the accuracy of the optical flows learned by the
bottom-up attention module.

We repeat the tracing experiment for five times in each
scenario, and show the average tracing performance in Fig. 19.
From the results, we find the system is robust to the illumi-
nation conditions if the target can be seen from the video.
However, the performance degrades significantly when the
target can hardly be visualized by the camera. In addition,
the system is not expected to work when there is no lighting
at all.

Fig. 18. Moderate (left) and limited (right) illumination scenarios and tracing
results. The frames have low SNRs when the illumination is constrained.

Fig. 19. Impact of illumination.

D. Blockage and Occlusion

Our current system cannot trace the target when the tar-
get is blocked due to the following two major challenges.
First, the system relies on the visual system to localize the
target. If the target is invisible in the video frames due to the
blockage, the system cannot acquire the fine-grained localiza-
tion information of the target. In addition, when the target
is blocked, the Non-LoS RF components would dominate
the received RF phase signal, which makes it challenging to
estimate the distance of the RFID tag.

In Fig. 20, we show how TagAttention would perform in a
blockage scenario. In the experiment, we ask a volunteer to
use a notebook to block the target toy from being sensed by
the camera and RF antenna. From Fig. 20 we find the system
can only detect the body part that is exposed to the camera
when the target is partially blocked and the RFID tag is fully
blocked (frame No. 52 and No. 56). When the target is fully
blocked (frame No.60), the system cannot detect the target
from the video. Then after the notebook is move away and
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Fig. 20. Performance of the system when the target is temporarily blocked.

Fig. 21. Two objects A and B move consistently. The dashed boxes represent
the groundtruth of the target positions.

the target exposed to the camera again for a while (around
one second), the system is able to capture the target again by
the attention mechanism.

There could be two types of possible solutions to resolve
tracing with temporary blockage. One is deploying multiple
antennas and using advanced RF signal analysis techniques
to extract the LoS signal component from the received RF
signals [21], [39], [40], [43], then localizing the tag based on
the RF signals. However, this type of methods also introduces
extra device expenses, sensor calibration and deployment
difficulties and larger localization errors. Another type of
methods is considering the correlation of visual features of the
discovered target over the consecutive frames. For example,
since TagAttention can already find the correct mask before
the rotation or blockage happens, we may use optical cor-
relation filters [2], [23], which are pretrained on conventional
video tracking datasets, to continuously track the targets when
they are partially blocked. However, we still cannot correctly
localize the target when the target is completely unseen with
this type of methods.

E. Consistent and Concurrent Mobile Targets

TagAttention correlates the RFID tag and the target object
by the consistency of their motion trajectories. Thus, if two
objects move along the same direction and at the same speed to
the sensors consistently and concurrently, TagAttention cannot
distinguish the two objects. TagAttention has this natural
limitation due to the assumption that the system has no prior
knowledge about the appearances of the targets to trace and it
learns the concept of the “target” from the RFID tags. Hence,
the concept of the “target” becomes ambiguous to the system
if the two targets move consistently and concurrently.

In Fig. 21, we show how the system would perform in such
kind of scenario. In the experiment, we ask the volunteering
to hold the two objects (a coffee bottle and a toy) and move
the object consistently. In the result, we find the system
can highlight the shape of both objects from the video and
recognize them as one whole target.

Fig. 22. An illustration of the 2D camera model in a tracing system.

F. Choice of Sensing Technologies

In TagAttention, we utilize an RGB-D camera to capture the
fine-grained 3D coordination of video frame pixels. However,
RGB-D camera is not a scalable commercial sensing device
due to its higher expense ($100 to $200 for most commercial
RGB-D cameras) and shorter sensing range than normal RGB
cameras. Here we discuss a few other alternative options of
the sensing system settings.

Option 1: one RGB camera with one RFID antenna.
Though the RGB camera is carefully calibrated (the intrinsic
camera matrix is known), we show this system setting is
insufficient to trace an unknown object. As the camera model
illustrated by Fig. 22, the object appearance projected on the
image plane may imply multiple possible positions of the
object in 3D space. Any motion vector of an anchor pixel
of the target on the RGB image is a projection of the real 3D
motion vector on the image plane. We assume we know the
“precise” distance from the RFID tag to the sensor by using
one RFID antenna in an ideal case (which is impossible in
practice due to the 2π wrapping of RFID phase and sensing
noises). Then the 3D motion component along the direction of
the line-of-sight (LoS) will result in zero position change of the
corresponding anchor pixel on the 2D image plane. In addition,
without knowing the distance, the 2D motion velocity of the
anchor pixel on the image plane can reflect different scales
of velocity on the planes that are parallel to the image plane
in 3D. Thus, it is infeasible to match a change of RFID signal
phase with the projected 2D motion of the tag (or object pixels)
in the image plane, without additional information of the RFID
tag position or target appearance.

Recent studies adopt this device setting with addi-
tional constraints of the target motion space. For example,
TagVision [11] and Tagview [12] require the object to move
only on a calibrated or fixed 2D subspace.

Option 2: two (or more) RGB cameras with one
RFID antenna. A camera stereo system can also provide
a depth channel by using multiple calibrated 2D cameras.
Thus, the camera stereo system could be another alternative of
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the RGB-D sensor, though a commercial stereo camera is no
cheaper than an Infrared camera. The channel fusion algorithm
of TagAttention can easily be extended to the camera stereo
system.

Option 3: one RGB camera with multiple RFID anten-
nas. Another possible solution is to use a single calibrated
2D camera and multiple RFID antennas. The RFID anten-
nas placed at different locations can provide sensing data
(such as RSS, signal phase, angle of arrival) from multiple
perspectives, which can help reduce the solution space of
the projected RFID tag position on the 2D image plane.
However, in practice, due to the phase wrapping, multi-path
and measurement noise of the RFID sensing signal, two
antennas are far from being accurate to obtain a fine-grained
projected location, especially when using the commercial
RFID readers and antennas as we used in the experiments.
Therefore, to make the plan feasible, we need to either increase
the number of antennas (such as using antenna arrays) [39],
[40], [43] or use software defined radio (SDR) with larger
bandwidth [28], or a combination of both, to improve the
RFID localization accuracy. Nevertheless, these settings will
significantly increase the expense of the sensing devices and
difficulties to deploy the sensors in practice.

In summary, we adopt the most commercial sensing hard-
ware setting to achieve the goal of 3D object tracing in
TagAtthention. Since vision techniques are more mature and
accurate in fine-grained localization of objects, our key insight
is to use the vision channel data as the major positioning
method of the object and use the RFID channel information
to actively detect and identify the unknown visual components
from the videos.

VI. LIMITATIONS OF THE WORK

Tracing of the mobile target without human’s supervision
is a critical but challenging problem in wireless sensing and
robotics. TagAttention solves detecting and tracking mobile
targets with RFID tags in an active manner. Meanwhile,
we acknowledge the following limitations of our current work
and invite new research ideas to resolve those challenges. First,
as discussed in Sec. V-D and Sec. V-E, our current system
does not support target tracing when the target is temporarily
blocked. Neither can it distinguish the IDs of the objects that
move consistently and concurrently. In addition, the system
can only detect mobile objects that moves faster than v0

(Sec. V-B). Due to these limitations, the current system is not
ready to be applied in the real-world scenarios that contain
too much complex semantics, such as cashier-free stores with
tens of tags and customs in a crowded space.

VII. CONCLUSION

We summarize the contribution of this work as the
following:

• We make the first attempt to design a pixel-level
RF-Vision fusion system that can detect and track the
targets with unknown appearances. The system is mainly
based on a novel “attention” model, namely, we use the
RF signal as a “top-down” supervision to direct the visual
system to discover the target.

• We propose an “attention propagation” method to propa-
gate the per-frame attention maps that contains historical
localization information over video frames, so that the
system can trace the target in the long-term.

• The system integrates advanced optical flow techniques
from Computer Vision and RF signal phase processing
from RFID localization studies.

• A calibration-free tracing system is implemented using a
commercial RFID reader and an RGB-D camera. We also
propose the RF signal smoothing, channel synchroniza-
tion, and tracking refinement strategies to resolve the
practical challenges in the real system.
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