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Abstract— Internet of Things has been widely applied in every-
day life, ranging from transportation and healthcare to smart
homes. As most IoT devices carry constrained resources and
limited storage capacity, sensing data need to be transmitted to
and stored at resource-rich platforms, such as a cloud. IoT appli-
cations need to retrieve sensing data from the cloud for analysis
and decision-making purposes. Ensuring the authenticity and
integrity of the sensing data is essential for the correctness and
safety of IoT applications. We summarize the new challenges of
the IoT data communication with authenticity and integrity and
argue that existing solutions cannot be easily adopted to resource-
constraint IoT devices. We present two solutions called dynamic
tree chaining and geometric star chaining that provide efficient
and secure communication for the Internet of Things. Extensive
simulations and prototype emulation experiments driven by real
IoT data show that the proposed system is more efficient than
alternative solutions in terms of time and space.

Index Terms— IoT, cloud, authentication, partial sample-rate
data retrieval.

I. INTRODUCTION

INTERNET of Things (IoT) is being widely applied
in a great number of everyday applications such as

healthcare [2], [3], transportation [4], [5], smart home [6]–[8],
and surveillance systems [9], [10]. IoT devices usually gen-
erate a large amount of sensing data to reflect physical
environments or conditions of objects and human beings.
As most IoT devices carry constrained resources and limited
storage capacity, sensing data need to be transmitted to and
stored at resource-rich platforms, such as a cloud. On the
other hand, analyzing historical sensing data is essential for
decision-making in various IoT applications [6], [11]. To this
end, both state-of-art IoT proposals [8], [12] and industrial IoT
practices [13] adopt the centralized data store residing in the
cloud, aiming that the sensing data can be stored economically
and retrieved effectively for analysis, as depicted in Fig. 1.
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Fig. 1. Overview of the IoT data communication.

In this paper, we present the design of an IoT data com-
munication involving the three key entities: sensing devices,
cloud, and data applications. We summarize the following key
requirements or challenges of the IoT data communication,
which distinguish it from traditional data collection and man-
agement methods.

A. Authenticity and Integrity

Since the sensing data are stored in a third-party cloud,
data authenticity and integrity, which guarantee that data
are from these sensing devices and have not been modified,
are important for trustworthy IoT applications [14]. However
the data could be corrupted by outside attackers [15], [16],
malicious cloud employees [17], transmission failures, or stor-
age loss [18]. Without data authenticity and integrity,
IoT applications may make wrong decisions and cause eco-
nomic and human-life losses. Authenticity and integrity should
be verifiable by data applications.

B. Data Random Sampling

A common but critical problem shared by state-of-art
IoT designs is that the resources for transmitting and storing
data (e.g. network bandwidth, storage quota) are limited in
presence of massive IoT data. By 2022, the IoT data is
expected to constitute 45% traffic in the Internet [19]. Cloud
providers charge users for storage, retrieval and transferring of
data [20]. It is desired to have predictable cost for both users
(in finance) and the cloud (in resource) [21]. Hence only a
fixed resource budget can be allocated to the sensing data
over a time period, called an epoch. For example, the cloud
can only keep 100 data records from any device collected
during every minute. Random sampling is widely used in
IoT [22]. To guarantee representative samples, every event
should have an equal probability to be sampled, which is called
the uniformity property. Uniformity is essential for unbiased
statistics estimation such as histogram [23], median [24] and
average [25].
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C. Flexible Application Requirements

Different applications may have different requirements
on sending data granularity. For example, applications like
self-driving cars need fine-grained road information, while
other applications like road-traffic estimation only need a few
sampled data. Even if the cloud can store up to 100 records,
some applications only retrieve part of them, e.g., 10 records,
due to bandwidth limit, memory limit, or application require-
ments. In addition, these 10 records should have verifiable
authenticity, integrity, and uniformity. We call this feature
partial sample-rate data retrieval.

We summarize our contribution in this paper as follows.
1) Our first effort is to extend a well-known digital signature

scheme, Merkle tree [26], [27], to Dynamic Tree Chaining
(DTC). DTC supports verifiable authenticity and integrity with
low space overhead at the IoT devices. DTC enables the
receiver to verify any single message and thus features partial
sample-rate data retrieval.

2) Our another contribution is an efficient digital signature
method, Geometric Star Chaining (GSC), which is designed
for the IoT data communication. GSC allows each sensing
device to sign only once for all data records in an epoch and
provides verifiable authenticity, integrity, and uniformity for
partial sample-rate data retrieval. GSC is preferable to DTC
when single message verification is not needed because GSC
could achieve better performance with less space overhead.

3) Efficiency and uniformity of data sampling that come
along with DTC and GSC are the highlight and distinguish
this work from existing solutions.

4) We investigate the problem of shared budget constraint
for a group of sensing devices and extend DTC as well as
GSC to resolve this problem.

The rest of the paper is organized as follows. Some prelim-
inaries to understand this paper is first described in Sec. II.
We present the problem statement in Sec. III. We describe the
system design details and extend it to incorporate budget limit
in Sec. IV and Sec. V respectively. Security and performance
analyses are presented in Sec. VI and Sec. VII. We conduct
extensive simulation and prototype emulation in Sec. VIII.
Sec. IX presents related work. Some practical issues are
discussed in Sec. X. Finally, we conclude this work in Sec. XI.

II. PRELIMINARIES OF DIGITAL SIGNATURE

There have been mature solutions for any individual require-
ment that has been studied by researchers for over decades.
However, no existing solution collectively resolves all require-
ments of emerging IoT applications. The difficulty stems from
the combination of seemly conflicting requirements.

Digital signature is a widely used method to protect data
authenticity and integrity: The sender first computes a mes-
sage digest D by hashing its original message m using a
cryptographic hash function H , D = H(m). H is also called
message digest function. Note the length of D is significantly
shorter than that of m. Then the sender uses its private
key k to encrypt D and attaches the signature Ek[D] to
the original message. When the receiver gets m and Ek[D],
it decrypts Ek[D] using the public key of the sender and
verifies whether D = H(m). However, applying the digital
signature to every sensing record, called the Sign-each method,
is not practical, because public-key encryption/decryption is
considered slow and expensive, especially for sensing devices
with limited resources. We test the performance of some
most frquently used cryptographic operations on M3, one

TABLE I

PERFORMANCE OF SOME CRYPTOGRAPHIC OPERATIONS

TABLE II

OVERALL COMPARISON OF DIFFERENT SIGNATURE SCHEMES

mainstream IoT hardware platform available from one pub-
lic testbed [28]. This hardware platform features one 32-bit
ARM Cortex-M3 CPU@72MHz. The result shows the average
time and energy to encrypt (RSA/DSA) or to compute hash
(MD5/SHA1/SHA256) over a 10-byte string. The result is
presented in TABLE I. Even though there is great advances
in hardware performance compared to prior platforms [29],
directly applying RSA/DSA is still not suitable for resource-
constraint IoT devices, especially for those powered by batter-
ies. A more efficient method, concatenate, is to compute the
message digest D for a large number of records and sign once
on D. This approach requires each sensing device to cache all
records and has the all-or-nothing feature: if some applications
only require part of the records, the signature cannot be
verified. A well-known method to sign a data stream is hash
chaining [30]. However, it does not fit the IoT communication
model either, because sampling and partial sample-rate data
retrieval will break the chain and hence make the signature
unverifiable.

We qualitatively compare existing digital signature schemes
and the main contributions of this paper, namely DTC and
GSC, in TABLE II.

III. PROBLEM STATEMENT

A. Network Model

We demonstrate the life cycle of IoT sensing data in Fig. 1.
Three different kinds of entities are identified as follows.

1) IoT devices are resource-constraint devices that generate
sensing data. IoT devices are usually limited in computation,
memory, and power resources. 2) Cloud is an ISP or a third-
party cloud provider who has rich resources and expertise
in operating cloud computing services. It charges clients
for data storage and data access. 3) Data applications are
software systems that may request to retrieve the sensing data
for analysis purposes. Different data applications may have
varied data granularity requirements. An application may fetch
all or a fraction of data from the cloud of an epoch to conduct
post-processing based on their requirements.

B. Data Model

IoT sensing data can be classified into two types: time series
data and event data [31]. Time series data are generated by
each device for every fixed time period, such as 1 second.
They are used to conduct continuous monitoring tasks such
as temperature reports. Event data are generated whenever a
certain type of events occurs, such as a vehicle appearing in
a smart camera. They are used to monitor discrete events.
Note time series data can be viewed as a special case of
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TABLE III

IMPORTANT NOTATIONS

event-based data driven by clocks. Moreover, event-based data
is more difficult to handle. In the case of time series data,
the data volume generated within one unit time is predictable
and therefore the resources would be allocated with priori
knowledge. For example, challenges of the sampling protocol
design in Sec. V derive from the combination of the distributed
setting and the unpredictability of data streams. Hence this
paper focuses on finding a solution for event-based data. The
proposed methods are also applicable to time series data.

We assume IoT devices transmit sensing data to the cloud at
a fixed time interval called epoch. IoT devices do not require
perfect synchronization but we do assume one synchronization
protocol available to loosely synchronize clocks on different
IoT devices with bounded drift.

C. Threat Model
We assume only IoT devices and data applications are

trustworthy. Cloud is NOT trustworthy, which may return
incorrect query results to the data application. We consider
that the adversary cloud may launch the following attacks.

1) Message forgery attack: The cloud forges data that
have never been sent by the IoT device. Specially,
the adversary cloud modifying the meta-data (e.g. data
source or epoch) or content falls into this category. 2) Biased
sampling attack: This attack violates the uniformity property.

The goal of this paper is to allow IoT applications to have
the capability to verify the authenticity and integrity of the
stored sensing data. Note that we do not address the issue
of data confidentiality and privacy in this paper. They are
orthogonal to the problem we study int this paper.

Each IoT device hosts and uses its own private key in
case of device compromises. We assume that there is a
well-functioning PKI which manages the distribution of the
public keys. We also assume that no special hardware is
leveraged to use physical-layer information to boost secure
communication [32], [33].

IV. SYSTEM DESIGN

We first assume that there is no budget constraint as it
is a common scenario in current IoT settings. We will relax
this assumption and incorporate budget constraints in Sec. V.
Some important notations in this section are summarized in
TABLE III.

A. Existing Signature Schemes

Digital signature is widely used to ensure data authenticity
and integrity. However, none of existing signature schemes are
appropriate for the IoT setting.

Fig. 2. Illustration of tree chaining. Verifying D3 requires sibling nodes in
the path to the root (D4, D12, D58), signature of the root ({D18}pk) and
the position of e in the tree (3).

First, the straightforward Sign-each method causes expen-
sive computational cost on both the signer and the verifier
owe to excessive public-key encryption/decryption operations.
Since data selection is completely executed in the cloud, if the
cloud selects event samples or the partial data with bias,
IoT applications are unaware of it. Furthermore, the Sign-each
method may not be able to detect data loss if an event record
is entirely disappeared.

The concatenate signature scheme can amortize the signing
and verification cost to multiple messages, but it is not suitable
for sensing devices which may be lack of buffer space to
accommodate all messages. In addition, it does not support
partial sample-rate data retrieval.

Hash chaining [30] reduces the buffer space complexity
from O(m) to O(1) for both the signer and verifier, where m is
the number of messages buffered in the sensing device to be
jointly signed. In the hash chaining signature scheme, only the
first message is signed and each message carries the one-time
signature for the succeeding message. However, hash chaining
fails when some events are dropped due to sampling or partial
sample-rate data retrieval.

To address the aforementioned problems, this paper presents
two novel signature schemes.

B. Dynamic Tree Chaining (DTC)

We start from the Tree chaining designed by Wong and
Lam [27], one variation of Merkle tree [26]. The digest of
each event report is one leaf node in binary authentication tree
presented in Fig. 2. The value of the internal node is computed
as the hashing of the concatenation of its two children. Take
the authentication tree in Fig. 2 as an example. D12 is the
parent of D1 and D2 and D12 = H(D1||D2), where H(·) is
the message digest function, such as SHA-1 [34] or MD5 [35],
used for tree chaining. Likewise, D14 = H(D12||D34) and
D18 = H(D14||D58). As a result, the root summarizes all
the leaf nodes. The root node is regarded as the block digest.
The block digest is appended with epochID and then signed
by the private key to create the block signature. EpochID is
used to identify which epoch the data are generated; otherwise,
the cloud returns events from other epochs without being
detected.

The verification process is on a per-event basis. In order
to verify the integrity/authenticity of an event e, the verifier
requires the block signature, the position of event e in the
authentication tree and the sibling nodes in the path to the root,
which are all appended to event e. As a result, the overhead
to transmit this metadata is O(log n), where n denotes the
number of events.

Basically, the verification algorithm is to replay the process
to build the authentication tree and to verify the nodes in
the path to the root. Imagine the receiver begins to verify
event e3 which is represented as the dashed circle in Fig. 2.
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First, the receiver computes D�
3 = H(e3) and then its

ancestors in order: D�
34 = H(D�

3||D4), D�
14 = H(D12||D�

34),
D�

18 = H(D�
14||H48). Event e3 is verified if the decrypted

block signature equal D�
18, that is to say

�{D18}pk−1

�
pk

=
D�

18, where {·}pk−1 denotes singing using private key whereas
{·}pk is the function to decrypt signature with public key.
In this case, all the nodes in the path, as well as their
siblings, are verified and they could be cached to accelerate the
verification process. Suppose the 4th event e4 arrives after e3

has been verified. Event e4 is verified directly if H(e4) = D4.
Note that the expensive encryption operation is amortized to

all events in one authentication tree and thus tree chaining is
computationally efficient. More importantly, since every single
event is verifiable in tree chaining, it is fully compatible with
partial sample-rate data retrieval without resource waste. The
most severe issue that impedes the adoption of the original
tree chaining in IoT environment is that all events should be
buffered in the IoT device before the building of authentication
tree, since each event ought to be appended with auxiliary
authentication information from the authentication tree.

Introducing cloud can greatly reduce the memory footprint
at IoT devices. The IoT device only maintains the message
digest of each event and stores all events to the cloud directly
without caching. At the end of each epoch, with all leaf nodes
available, the IoT device builds the authentication tree, which
is then sent to the cloud. The cloud in turn attaches essential
authentication information to each event received in the current
epoch. The memory footprint can be further optimized if the
authentication tree grows in an online fashion: The IoT device
transmits to the cloud internal nodes no longer needed for
calculating the rest of authentication tree. An internal node is
generated when its two children are available. In the meantime,
these two children are transmitted to the cloud. We reuse Fig. 2
to illustrate the online authentication tree building process.
D1−D8 represent the message digests of the events in timely
order. D12 is calculated immediately when D2 comes into
play. In the meantime, D1 and D2 cached in the sensing device
are transmitted to the cloud. Likewise, when D4 is available,
D34 is computed, which in turn immediately contributes to the
calculation of D14. As a result, at that time D3, D4, D12 and
D34 are dismissed from the sensing device. It is not hard to
imply that this optimization reduces the space complexity in
the sensing device to host nodes of authentication tree from
O(n) to O(log n), where n denotes the number of events
monitored in one epoch.

For DTC, data selection is completely executed in the
cloud when the data application retrieves partial sample-rate
data. Without additional mechanisms, if the cloud selects
event samples or the partial data with bias, IoT applications
are unaware of it. The plausible solution is to allow the
data application to specify the sequences of the interesting
events. It is the application’s own responsibility to guarantee
uniformity. Apparently, this straightforward method is not
scalable. To this end, we propose to optimize this solution by
expressing the sequence of requested events in a succinct way.
A sequence number is appended to each event to indicate
its position in the authentication tree. The data application
sends a number m which specifies the number of events
requested as well as a seed s which determines one random
permutation. The cloud returns the events specified by the top
m elements in the random permutation. The data application
checks whether these events sequence numbers are consistent
with the random permutation. In this proposal, the uniformity

is guaranteed by the random permutation. In the appendix,
we demonstrate the pseudocode of random permutation
algorithm, which is an implementation of Fisher-Yates
shuffle [36]. The random permutation algorithm ensures that
the m randomly sampled events conform to uniformity. The
detailed analysis is provided in Sec. VI.

Furthermore, using different seeds enables re-sampling,
which means that the receiver can request for different sets
of uniformly drawn events from the cloud. This feature is a
useful tool for various purposes, including estimating the bias
and standard error of a statistic [37], cross-validation [38]
and ensemble learning [39], etc. For example, each weak
learner of ensemble learning requires one instance of training
dataset generated by one round of re-sampling from the
whole dataset. More references on the usage of re-sampling
could be found in [40].

Nevertheless, the number of generated events is unpre-
dictable and may be unbounded. Once the buffer in the sensing
device is full, the root node in the authentication tree is signed
and the remaining nodes are flushed to the cloud to spare space
for upcoming events. In this case, one IoT device may apply
digital signature more than once in one single epoch. The
verifier also requires additional space to cache the verified
nodes. The verifier stops caching new verified nodes when
the buffer is full. As a result, the buffer space constrains the
performance of DTC, which is a particularly severe problem
in IoT environment where most devices possess little buffer
space. DTC can be also extended to k-degree Merkle tree.
We will have performance analysis in Sec. VII and show that
the binary DTC presented in this section is the most space
efficient.

Even though DTC is a variant of Tree chaining designed
by Wong and Lam [27] (which itself is derived from Merkle
tree [26]), there are several differences and we summarize as
follows. 1) DTC and Tree chaining target different scenarios.
Tree chaining is used for signing broadcast messages and
therefore uniformity is not supported in the Tree chaining
original paper. 2) The most significant feature of DTC is its
low space cost and the accompany improvement in perfor-
mance. The evaluation results reveal in Fig. 9 indicate the that
DTC outperforms tree chaining when the memory space on
the IoT device is constraint.

C. Geometric Star Chaining (GSC)

We propose a more efficient and secure data communication
in this paper, called Geometric Star Chaining (GSC). GSC still
support partial sample-rate data retrieval. Even though GSC
does not enable the data consumer to verify every single
message alone as DTC can, most IoT applications do not have
such requirement.

The basic idea of GSC is inspired by one observation that
any arbitrary fraction value can be represented or closely
approximated by a few number of binary digits. For instance,
5/8 = (0.101)2. Thus, partial data with sample rate p,
where p =

�
2−bi and bi is the position of the i-th 1 in

the binary expression of p, is equivalent to the union of
multiple data blocks each corresponds to one set bit in the
binary representation. The data block is called sample blocks
in this paper. For instance, to retrieve a sampled data with
sampling rate 5/8, the cloud can send the data application two
blocks containing (approximately) 1/2 and 1/8 of the samples
respectively.
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Fig. 3. Visual representation of numerical intervals.

Fig. 4. Illustration of GSC. Verifying the second sample block requires the
events in it, D1, D3 and D4.

The events included in the sample blocks are in geometric
distribution. Each sample block should draw events uniformly
from the IoT data stream. In order to ease the presentation
of how sample blocks form, we define a set of successive
numerical intervals {Si} where Si � {x ∈ R : 2−i−1 < x ≤
2−i, i ∈ N}, which are visually represented as rectangles
in Fig. 3. On receiving a new event e, the sensing device
computes which numeric interval in {Si} that h(e) falls in
and event e is inserted into the corresponding sample block,
where h(·) is a non-cryptographic uniform random hashing
function and ∀x : 0 ≤ h(x) ≤ 1.

Note that events in the same data block are either completely
retrieved or not retrieved at all. Thus we can view each of such
data block as an atomic “giant event”. GSC computes one
message digest for every block and concatenates these digests
to a single digest for digital signature, as is depicted in Fig. 4.
The digest of one sample block is computed in an online
fashion. One variable Di is allocated to each sample block
to capture the newest value of message digest. Suppose a new
event e observed at the device which belongs to the ith sample
block. The message digest updates as Di = h (h(e)||Di),
which is also referred as Merkle-Damgård Construction [41].
This online updating proceeds until the end of the epoch.
At this time, concatenate approach is applied to all the message
digests {Di}. The result summarizes all events generated in
one epoch. Note the value i, which indicates the sampling
rate of each block, should also be stored and hashed with the
block. In this way, the application that receives the block can
verify the sampling rate.

In fact, any random function can be used to implement
the geometric distribution for GSC, such as continuous coin-
tossing, but using a uniform random hash is convenient. One
practical issue about hashing is that the raw output of hashing
functions is one finite-length bit sequence. Computing which
numerical interval in {Si} that h(e) falls in is equivalent to
counting leading zeros (CLZ) in that bit sequence, which is
intrinsically supported in many hardware platforms including
X86 and ARM. Therefore, |{Si}| and hence |{Di}| are
bounded by the size of the bit sequence. For the case of
xxHash64 [42], this function produces 64-bit hash values and
thus |{Si}0≤i≤64| = 65 and |{Di}0≤i≤64| = 65. It is evident
that space cost for this signature scheme at the sensing device
is constant.

D. Data Retrieval and Verification of GSC

A sampled fraction of sensing data is usually sufficient for
most IoT applications [43]. In the network model presented
in Sec. III-A, an application requests for a certain fraction of
events observed at a particular sensing device from the cloud.
GSC provides verifiable authenticity, integrity, and uniformity
for partial data retrieval with an arbitrary sampling rate.

Based on the application requirement, a data application first
determines the maximum number of events of each sensing
device for an epoch it wants to receive, called a portion
number. It then sends all portion numbers to the cloud. For
each portion number, the cloud converts it to a sampling
rate p and constructs the binary expression of p, such that
p =

�
2−bi where bi is the position of the i-th 1 in the

binary expression of p. Then the cloud sends the corresponding
sample blocks to the application.

For the received sample blocks, the application first com-
putes their digests as the final digest used for the signature.
It then compares the final digest and the decrypted signature.
This step verifies the following properties. 1) The received
blocks were not modified or partially dropped and 2) The data
were indeed uniformly sampled based on the given sampling
rates and the uniform random hash function.

Compared to DTC, GSC requires smaller buffer size on each
sensing device. It also provides verifiable uniformity. More-
over, GSC is more performant than DTC as demonstrated by
Fig. 14 which shows the throughput comparison between GSC
and DTC. The improvement in performance is not attributed
to the underlying star chaining structure, since K-degree DTC,
of which star chaining could be viewed as an extreme case,
is even slower than normal 2-degree DTC in terms of tree
building and packet generation, as indicated by TABLE VI
and Fig. 11. GSC does not support random permutation as
in DTC because GSC by design ensures verifiable uniformity
which is the motivation for random permutation; otherwise,
random permutation would offset most of the performance
gain of GSC.

V. INCORPORATING BUDGET LIMIT

With ever-growing volume of IoT data, storing all raw IoT
data in the cloud poses a heavy monetary burden on the users.
In the previous section, we have discussed the system design
without restricted budget limits. We relax this assumption
and incorporate the budget limit in this section. The solution
presented in this section to address the issue of budget limit
is compatible with DTC and GSC.

A. Sampling Protocol Design
In this section, we describe a distributed sampling protocol

taking the budget limit into consideration. This sampling
protocol introduces a new entity, called coordinator, in the
network model. One coordinator is a software working as a
sampler which sits between the sensing devices and the cloud.
A coordinator can be installed on an IoT hub or a server at
the edge of the Internet. It maintains communications with all
sensing devices on behalf of the cloud and temporarily buffers
IoT data samples.

We focus on one single epoch in the discussion since at the
beginning of each epoch, the sampling protocol (SP) is reset
to the initial state. At the end of each epoch, the coordinator
signals all sensing devices to advance to the next epoch. The
straightforward solution is to buffer all the events in the coor-
dinator and uniformly sample them based on the budget limit.
However, the number of these events could possibly be very
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large, and therefore the storage capacity of the coordinator may
be not enough to accommodate them all. Thus, a sampling
protocol with space bound for both the sensing device and
the coordinator is desired. The challenge of such sampling
protocol design derives from the combination of the distributed
setting and the unpredictability of data streams. If only one
stream of data is considered, the problem is regressed to classic
reservoir sampling [44], which has been studied extensively in
the literature. Also, as long as the number of elements in each
stream of data is known in advance, the central coordinator can
decide how many samples are allocated to different sensing
devices, each of which runs an instance of reservoir sampling.

To this end, we utilize the recent study in distributed
streams [21] and design an efficient sampling protocol based
on it. The basic idea of this sampling protocol is to dynam-
ically maintain events with the smallest hash values on the
coordinator, also known as bottom-k sampling [45]. Sup-
pose B is the sampling budget per epoch. For the simplest
implementation, all IoT devices upload generated events to
the coordinator directly. The coordinator only maintains the
B events with smallest hashing value and discards others in an
online fashion. As long as the hashing is uniform, the events
maintained in the coordinator are drawn uniformly from all
events already observed from the epoch.

In order to reduce network bandwidth consumption,
the coordinator could broadcast to all sensing devices current
global B-th smallest hash value, denoted as τ , so that the
IoT devices could discard the events locally whose hash value
is greater than τ . Let σ denotes the total number of events sent
to the coordinator and K is the number of sensing devices.
One straw-man sampling protocol is that the coordinator
broadcasts the new value of τ every time it changes. Since
τ changes O(B log σ) times, the communication cost between
the coordinator and the sensing devices is O(KB log σ).
Cormode et al. [22] proposed a distributed sampling algorithm,
which is proved to be optimal in terms of communication
cost, which is O(K logK/B σ+B log σ) with high probability.
We tailor it to fit our proposed signatures, DTC and GSC.
Basically, the coordinator accepts any event from all IoT
devices until the budget limit is exceeded. The coordinator
discards half of the received events (i.e. the coordinator halves
the sample rate) to accommodate new events. The coordinator
repeats this process until the end of the epoch and then
uploads the stored events to the cloud. The detailed distributed
sampling protocol is presented as follows.

The sampling protocol executes in multiple rounds. The
coordinator as well as the sensing devices maintain a variable
which represents which round the sampling protocol is in, and
the coordinator ensures that all devices are kept up to date
with this information. Initially, the sampling protocol begins
at round 0. Suppose the sampling protocol is at round j.
As we will see, round j indicates a sample rate of 2−j . This
protocol involves two algorithms at the sensing device and
the coordinator respectively. The pseudocode for the sensing
device and the coordinator is presented in Algorithm 1 and
Algorithm 2 respectively.

1) Sensing Device: On receiving a new event e, the sensing
device first computes which numeric interval in {Si} that h(e)
falls in, and updates the local counter associated with this
set, where h(·) is a uniform random hashing function and
∀x : 0 ≤ h(x) ≤ 1. Computing the numeric interval can still
be visually interpreted by Fig. 3 where the result presented
the i− th largest rectangle. Let lki be the local counter for Si

Algorithm 1: SP at Sensing Device k in Round j

1 foreach event e do
2 i← min{x ∈ N : h(e) ≥ 2−x−1};
3 lki ← lki + 1;
4 if i ≥ j then
5 Forward e to the coordinator;
6 else
7 Discard e;
8 end
9 end

at device k. Each sensing device and the coordinator maintain
their own local counters. The local counters at devices are
used for auditing the coordinator. The detail will be discussed
in Sec. VI and the sampling protocol still works correctly
without these counters. It is worth mentioning that all sensing
devices and the coordinator use the same hashing function.
Suppose h(e) ∈ Si. If i ≥ j, which implies h(e) ≤ 2−j

(sample rate), the device instantly forwards event e to the
coordinator; otherwise, the event is discarded locally. At the
end of each epoch, the sensing device signs both sampled
events and all counters it maintains. Note that none events are
buffered at the device in any case.

2) Coordinator: The coordinator maintains queues {Qk
i },

each of which corresponds to one numerical interval in {Si}
of each sensing device. Upon receiving an event e, the coor-
dinator first computes i, such that h(e) ∈ Si, followed by
comparing the value of i and j. In the case of i < j, event e
is discarded; otherwise, it is buffered at queue Qk

i (suppose
the event is from kth sensing device) followed by updating
both the counter associated with numerical interval Si and
the global counter g, which records the total number of
events buffered at the coordinator. At this moment, as long
as the value of the global counter g exceeds the budget
limit B, all event queues associated with Si are discarded,
the global counter is updated accordingly and the sampling
protocol advances to the next round (i.e. j ← j + 1). The
coordinator then signals all sensing devices to promote to the
newest round j. It is evident that coordinator buffers at most
B + 1 events all the time. Hash chaining cannot coexist with
the sampling protocol, because the coordinator is allowed to
discard events that are essential for the verifier to validate the
received data. DTC and GSC, on the other hand, do not bear
the same problem. Algorithm 2 is the pseudo-code for the
coordinator part of this sampling protocol.

B. Data Retrieval

The sampling protocol is compatible with DTC and GSC.
It is natural for this budget-based sampling mechanism to
be compatible with GSC since the sampling algorithm dis-
carding the events half at each round which is essentially
removing the existing largest GSC sampling block. As a result,
the remaining buffered sample blocks correspond to successive
numerical intervals. The data application can still fetch any
fraction of data that is stored in the cloud. DTC requires a
minor modification to support verifiable uniformity when the
sampling protocol is performed. Recall how DTC leverages
random permutation to guarantee uniformity in Sec. IV-B.
The sampling algorithm may discard the events specified by
the random permutation. We argue that the receiver can still
draw events uniformly from the cloud if the receiver can check
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Algorithm 2: SP at The Coordinator in Round j

1 foreach event e do
2 i← min{x ∈ N : h(e) ≥ 2−x−1};
3 k ← e.source;
4 if i ≥ j then
5 Qk

i .add(e);
6 l�i ← l�i + 1;
7 g ← g + 1;
8 while g > B do
9 Discard queues {∀k̂, Qk̂

j };
10 g ← g − l�j;
11 j ← j + 1;
12 Broadcast j to all sensing devices;
13 end
14 else
15 Discard e;
16 end
17 end

the existence of every event. Suppose the receiver would like
to fetch n events from the cloud. Instead of sending to the
receiver the first n events specified by the random permutation,
the cloud should reply with the first n existing events sorted
by the random permutation. We enable the receiver to check
the existence of an event locally by proposing that the hash
function h(·) in the sampling algorithm is based on the event
sequence number and epochID, but not the content. If the
hash value falls outside the discarded numerical intervals,
the receiver instantly knows the existence of the event.

VI. SECURITY ANALYSIS

We use digital signatures to verify data integrity and authen-
ticity. Any inconsistency in the verification procedure indicates
data in the cloud untrusted. In the sampling protocol, each
sensing device maintains a counter to record the number of
events that fall in a certain sample block.

A. Defending Against Message Forgery Attacks

Both DTC and GSC follow classic Hash-and-Sign Signature
paradigm to provide the desirable property of existential
unforgeability [46] to defend against message forgery attack.
Hash-and-Sign Signature paradigm requires the hash function
to be collision resistant. For a collision-resistant hashing
function, if the output length of the hash function is l bits,
the probability for the adversary to forge a signature by
finding the collision of a hash value is 2−l. In the context of
this paper, performing the hash operation means to compute
the root of the tree chain (star chain) for DTC (GSC).
DTC does not modify the hash computation of the underlying
tree chaining. GSC leverages Merkle-Damgård Construction
(Hash Chaining) [41], which has been proved to be collision
resistant, to compute each node of start chain.

We prove in Appendix that Tree Chaining (used in DTC)
and Star Chaining (used in GSC) are collision resistant if the
underlying hash function is collision resistant. Therefore, both
DTC and GSC are resistant to message forgery attacks.

B. Defending Against Biased Sampling Attacks
For DTC, a random permutation is leveraged to sample

data from the cloud. We will prove that the property

of uniformity is preserved by the random permutation.
Random permutation is an implemented of Fisher-Yates
shuffle [36]. In [36], it has been proved that after random
permutation any element can be placed at any position with
equal probability. Since our implementation outputs the first m
elements of random permutation, the uniformity is preserved.

For GSC, which sample block events belongs to is uniquely
determined by a non-cryptographic uniform random hashing
function. As a result, any sample block contains uniformly
drawn events.

C. Defending Against Dishonest Coordinators

The sampling protocol also defends against dishonest coor-
dinators which do not execute the protocol in a correct way.
For example, a dishonest coordinator may stop monitoring
sensing devices by intentionally setting a negligible sample
rate. The most difficult part is to check the final round that
sampling protocol terminates at Appendix proves how the local
counters from IoT devices are used for audit correctness of the
sampling protocol.

VII. PERFORMANCE ANALYSIS

In Sec. IV-B, we present the Merkle tree implemented by
one binary tree. Merkle tree can be constructed in the form
of k-degree tree as well. For the extreme case, Merkle tree
authentication is degraded to star chaining when k exceeds the
number of events. In this section, we first analyze more generic
k-degree DTC in terms of time and space complexities. After
that, we comprehensively compare k-degree DTC with GSC.
Finally, the performance analysis, especially space cost is
presented in Sec. VII-C.

A. K-Degree Dynamic Tree Chaining
Suppose the IoT device detects n events in one epoch.

Therefore, the height of the k-degree Merkle tree is O(logk n).
The sibling nodes in the path to the root are needed to compute
the root hash value for signature verification. As a result,
O(k logk n) hash values are attached to every event. For the
same reason, the signer maintains at least O(k logk n) nodes
to dynamically update the authentication tree.

The time to sign a set of events consists of three parts:
authentication tree building time, root signing time and packet
generation time. The time to build the authentication tree
is proportional to the number of nodes in the tree. In the
k-degree Merkle tree summarizing n events, there are 1

kn +
1
k2 n + . . . = O( 1

k−1n) internal nodes in total. The value of
each internal node is computed by taking the hashing of the
concatenation of all its children. Suppose the time complexity
of the hashing function is O(l), where l is the length of the
input string. (This is the case for most hash functions such
as MD5 [35] and SHA-1 [34].) In this case, computing one
internal node takes O (k ∗O(1)) = O(k) time units. With
O( 1

k−1n) internal nodes, the time complexity to compute all
internal node values is O(n). For the leaf node, its value equals
the hashing of raw data. If we denote li as the data length
of event ei, the time complexity of computing leaf nodes is
O(

�n
i=1 li). The overall authentication construction time is

thus O(n +
�n

i=1 li).
Signing the root is one public-key encryption operation,

which is the same for any degree of Merkle tree.
Packet generation is to append necessary verification infor-

mation to each event. In DTC, we offload packet generation to
the cloud. Following what discussed above, O(k logk n) time
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TABLE IV

SPACE COMPLEXITY OF DIFFERENT SIGNATURE SCHEMES

units are required to append all hash values to the event for
verification.

If the receiver is granted enough space to cache all the
internal nodes, the time complexity to build the authentication
tree in the receiver side is identical to that in the sender
side. Accordingly, one public-key decryption is applied to the
signature of the authentication tree root.

B. Geometric Star Chaining

Following the notation in the last subsection, we still present
the number of events detected in one epoch as n. Recall that
hash value of sample block is updated as D = h (h(ei)||D)
upon a new event ei. The time complexity to update the sample
block is thus O (l + O(1)). In GSC, an individual event does
not go through packet generation phase. Instead, one whole
sample block is only associated with one piece of verification
information which significantly reduces the packet signing
time consumption. In conclusion, the time to sign n events
in one epoch for GSC is O(n +

�n
i=1 li) plus one public-key

encryption.
The main advantage of GSC over DTC is its constant space

complexity. The memory footprint is only bounded by the
number of sample blocks.

C. Sampling Protocol

Both the sensing device and the coordinator are sensitive
to space consumption. Since the space consumption for the
events themselves is the same, we concentrate on the space
used for different signature schemes. We go into details on
the space complexity of different signature schemes, which are
compatible with the sampling protocol, at the sensing device
and the coordinator respectively, as shown in TABLE. IV,
where n is the number of events monitored at one device
and n� denotes the maximum value of n among all sensing
devices. The space complexity of DTC at the coordinator is
O(B log n�) because there are O(B) events buffered at the
coordinator and in the worse case each event is appended
with O(logn�) hash values for verification. Following the same
line of reasoning in Sec. IV-B, the lack of buffer space in
the coordinator may significantly degrade the performance
of DTC. GSC requires O(K) space at the coordinator because
the coordinator maintains the sample block digests for all
K devices. Note that space complexity discussed above is for
the verification metadata and the space complexity of the raw
data is always O(B) for all signature schemes.

The communication cost of the sampling protocol is the
same as the protocol proposed by Cormode et al. [21], which
is proved to be optimal in terms of communication cost, which
is O(K logK/B σ + B log σ) with high probability.

VIII. EVALUATION

We conduct extensive trace-driven simulation and proto-
type experiments using real dataset. We use two encryption
algorithms, RSA-1024 [47] and DSA-512 [48]. MD5 [35],
SHA-1 or SHA-256 [34] are leveraged as the message digest

function. We implement DTC and GSC as well as another
three alternative signature schemes for comparison.

A. Experiment Setup and Methodology

1) Dataset: The dataset [49] includes a wide variety of
90-day sensing data collected from sensing devices at three
homes. We select 7 sources event data from the dataset to
represent the event reports generated at sensing devices: envi-
ronmental information (including temperature and humidity,
etc. ) about homeA, homeB and homeC respectively; electrical
data from dimmable and non-dimmable switches for homeA;
two sets of operational data on door and furnace on/off for
homeA; the data from the motion detector located at homeA.
Each record is encoded into 4 bytes: 2 bytes for timestamp
and 2 bytes for sensor reading.

2) Hardware Configuration: The prototype emulation
experiments are conducted on a quadcore@3.40GHz Linux
desktop with 32GB memory and a Raspberry Pi 3 Model B
with a quad-core 64-bit ARM Cortex A53@1.2GHz. For all
prototype experiments, only one core is used.

3) Methodology: The simulation experiment takes the bud-
get limit into consideration. Conducting the simulation exper-
iment serves two purposes: 1) Investigate the sampling pro-
tocol. 2) More importantly, the data trace of the simulation
experiment will be fed the prototype experiment. For example,
the simulation experiment computes which events should be
sent to the coordinator and which events should be discarded
locally. Only the events sent to the coordinator are fed to the
prototype to evaluate signature generation through/speed at full
speed. The prototype experiments are conducted on both the
Linux desktop and the Raspberry Pi board to represent IoT
device. Unless otherwise explicitly expressed, the default hard-
ware platform to conduct prototype experiment is the Linux
desktop. We do not test the throughput/speed in real distributed
settings, because the data trace (e.g. sparse event data) may
not be able to stimulate the IoT device to run at full speed.
The prototype experiment is not conducted on one M3 board
(We test the cryptographic operation performances on this IoT
platform) because we cannot replay trace on it. We simulate
the sampling protocol driven by the 7 sets of data listed
above. We vary the budget limit and evaluate its impact on the
simulation results. We implement the signature scheme proto-
type for performance comparison against alternative solutions.
The prototype experiment first tests the signing and verifying
performance without sampling protocol involved under varied
parameters. We next conduct prototype experiment in a setting
where sampling protocol is involved. The second prototype
experiment focuses more on the potential maximal throughput
of tested signature schemes, since other impacting factors are
explored in the prior prototype experiment.

B. Simulation Result

We first conduct one micro-scale experiment to illustrate
how the sampling protocol proceeds when new events arrive,
as depicted in Fig. 5. We fix the budget limit to 500 events in
this micro-scale experiment. The three lines in Fig. 5 represent
the number of events buffered at the coordinator, sent to the
coordinator by all the 7 sensing devices and monitored at
all sensing devices, respectively. The three lines vary against
time in one day (May 1st, 2012). Initially, the number of
events is the same for the three lines until the number of
buffered events at the coordinator reaches the budget limit.
At this time, approximately half buffered events are discarded,
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Fig. 5. One-day micro-scale exp.

Fig. 6. #events saved in the cloud.

illustrated as the first vertical drop in Fig. 5. Events at the
coordinator then are accumulated over time until the next sharp
decrease. This process repeats down to the end of this epoch.
The space used at the coordinator never exceeds the budget
limit. It is worth mentioning that the total number of events
sent to the coordinator grows slower with the time, which
is a desirable property since the communication cost stays
low even if much more events are monitored. This simulation
experiment, to some extent, validates the theoretical analysis
on the communication cost in which the communication cost
only grow logarithmically. From Fig. 5, totally 1057 events
were sent to the coordinator on May 1st, 2012. On the other
hand, there were totally 2572 events monitored on that day.

Next, we investigate how different values of budget limit
impact the number of events eventually saved to the cloud.
We present the number of events saved at the cloud each day
from May 1st, 2012 to July 31st, 2012 with different values
of budget limit in Fig. 6. Fig. 6 shows that this sampling
protocol utilizes approximately 75% of the budget on average
for different budget values. In Fig. 6, we also demonstrate
that this sampling protocol works correctly in the presence of
drastic changes, as the number of events monitored soars at the
40th day. In this case, the sampling protocol does not violate
the budget constraints. On condition that the total number of
monitored events is smaller than the budget limit, the sampling
protocol saves all of them in the cloud, as is exemplified by
the case where budget = 4000 in Fig. 6.

The underlying foundation of our sampling protocol is that
uniformly sampling is ensured. We will see the importance
of uniformity in one real application. The temperature sen-
sor periodically measures the environmental temperature and
sends the sensing data to the cloud for archiving purpose.
We calculate the average temperature outside homeA each
day based on the sampled data saved at the cloud. The
ground truth is the mean of all temperate sensing data from
the temperature sensor. In order to illustrate the need for
uniformity, we calculate the average temperature by the first
40 truncated sensing data (which is greater than the number
of saved data in the cloud under most circumstances in this
simulation experiment). Fig. 7(a) demonstrates how estimated
average temperature deviates from the true one with respect
to using our proposed sampling protocol and using naive

Fig. 7. Computing average temperature from data saved in the cloud.
(a) Deviation from the ground truth. (b) Impact of budget limit.

truncation, when the budget limit is fixed to 500. It is obvious
that the average temperatures calculated by uniformly sampled
data are much more useful in reflecting the real data. In this
example, the truncated data are measured in the morning.
Thus, the average temperatures calculated by truncated data
are smaller than real average temperatures in nearly all days
(only one day is an exception). We then evaluate how the
value of budget limit affects the accuracy of estimated average
temperature. As expected, a greater value of budget limit yields
more accurate results, as illustrated in Fig. 7(b).

C. Prototype Emulation Experiment Without Budget Limit

We conduct extensive prototype emulation experiments in
this subsection. The efficiency of the signature scheme used
greatly impacts the adoption of sensing devices, since most
sensing devices are resource-constraint. As an indirect mea-
surement of power consumption, we evaluate the speed of
signing under different parameter settings. We also evaluate
the performance at the verifying phase. The data applications
may fetch data from hundreds or thousands of devices, the ver-
ifying speed is also critical for a scalable application.

The 7 data sources each divided into 90 epochs are the input
to the singing phase of the signature scheme, whose output
feeds the verifying phase afterwards. No budget constraints
are involved and therefore all signed events are stored in the
cloud. The parameter space consists of the space available at
the signer/verifier as well as the sampling rate of the data
application. The space cost at both the signer and the verifier
to host the events themselves is orthogonal to the choice of
signature scheme. Thus, the space cost in this subsection is in
particular referred to the memory footprint of the signature
scheme. It can be implied from the algorithm descriptions
in Sec. IV that the memory usage for all signature schemes
mentioned in this paper is a multiple of the length of the
message digest function. In order to simplify the presentation,
we refer one unit of space cost as the memory space used
for storing one message digest. DSA is applied to the public
encryption/decryption and MD5 is utilized as the message
digest function in this subsection.

First of all, we quantitatively compare the performance of
the signature schemes in TABLE II. In this set of experiments,
no limits are placed onto the signer/receiver space usage
and we set the application’s sampling rate to be 50%. The
encryption algorithm is RSA-1024 and the hashing function
to compute digest is MD5. We measure the amortized cost
for encryption time, sender and receiver communication cost.
Especially, the amortized receiver communication cost is
computed as the #received bytes

#records of interest . The results are listed
in TABLE V. As expected, the amortized time to sign
one record much larger for Sign-each method. Since the
signature length of RSA-1024 is 128 bytes, the amortized
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TABLE V

QUANTITATIVE COMPARISON OF DIFFERENT SIGNATURE SCHEMES

Fig. 8. Throughput comparison.

Fig. 9. DTC receiving throughput.

sender/receiver communication cost is 128 + 4 = 132 bytes.
For all other signature schemes, their amortized encryp-
tion time is similar. For Concatenate and Hash chaining,
the receiver’s communication cost is approximately twice as
large as the sender’s because only half of the received records
are of interest.

We measure the performance of two signature schemes with
given space in the signer. To focus on the impact of the space
issues at the signer side, we allocate enough free space to
the verification process and the receiver takes all data stored
in the cloud. If DTC is used, once the buffer in the signer
is full, the root node in the authentication tree is signed and
the remaining nodes are flushed to the cloud to spare space
for upcoming events. Thus, lacking space in the signer may
lead to multiple expensive encryption operations in one epoch.
Furthermore, the same number of decryption operations are
also needed at the verifier side. On the other hand, the available
space affects the resolution of the sample blocks, rather than
signing speed. Only one encryption operation is performed
in a single epoch. Fig. 8 illustrates the signing/verifying
performance comparison between GSC and DTC under varied
space available at the signer. It is obvious that both signing and
verifying performance of DTC are capped by available mem-
ory at the signer, whereas GSC runs at full speed all the time.

The sampling rate at the receiver side also affects the
verifying performance for both GSC and DTC, because it
directly determines the number of events to share the cost of
encryption/decryption, as depicted in Fig. 10, where higher
sampling rate yields better verifying throughput. Another
observation from Fig. 10 is that sampling rate also impacts
GSC in terms of the space needed in the signer to achieve
the maximal verifying throughput. Recall that the available
space in the signer defines the resolution of sample blocks.

Fig. 10. Verifying throughput comparison with different sample rate.

Fig. 11. K-degree DTC Merkle tree exp. (a) Amortized building time.
(b) Amortized pkt. gen. time.

The unused but verified events decrease as the resolution of
the sample block improves. Suppose the receiver asks for
10% data in the cloud. In the case where there are 2 units
of space in the signer, the receiver fetches and verifies 30%
unused data because the finest sample block contains 50%
data. If the available space increases to 3 units, the smallest
sample block consists 25% data and thus the unused data
shrinks to 15%. The time wasted for unused data becomes
increasingly prominent when the sampling rate decreases.
Therefore, smaller the sampling rate, more space required at
the signer. The good news is that as small as 7 units of space
are enough to support maximal verifying throughput when the
sampling rate is 1%.

Moreover, the verifying throughput varies with the space
allocated to cache verified nodes in the authentication tree
for DSC. In our current prototype implementation, the ver-
ifier stops caching new verified nodes if the buffer is full.
As expected, the performance acceleration is more evident
with more cached verified nodes, as illustrated in Fig. 9. It is
interesting to note that before any of the three lines in Fig. 9
reaches full speed, for a given fixed space at the verifier,
the verifying throughput is higher when there is less space
available in the signer. This is because the locality of the cache
nodes favors higher refreshing frequency. When smaller space
is available at the signer, the number of jointly signed events
is less and thus the cached nodes refresh quicker.

We also measure the time to build the Merkle tree and to
generate packets for K-degree DTC. In this set of experiments,
we synthesize different sizes of data traces to feed the machine
running K-degree DTC. MD5 is used as the cryptographic
hash function. For each trace, we conduct the experiment for
10 times and we depict the medians of per-packet amortized
time consumption for Merkle tree building and packet gen-
eration in Fig. 11. In terms of per-packet time to build the
Merkle tree of a certain degree, it remains stable with the
varying number of events, which conforms the time complex-
ity analysis in Sec. VII-A. In Fig. 11, the lines lightly decline
because more events share the initial setup overhead. Another
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TABLE VI

PER-PACKET GENERATION TIME WITH FIXED HEIGHT h = 3

interesting finding is that it is faster to build the K-degree
Merkle tree when K = 4 than when K = 2 and K = 3, even
though they all share one asymptotic time complexity. The per-
formance gap is mainly due to the asymptotic time complexity
of hash functions cannot describe the time consumption in
K-degree Merkle tree building accurately. In Sec. VII-A,
we assume the time complexity of the cryptographic hashing
function is O(l), where l is the length of the input string.
However, the actual time consumption is proportional to the
number blocks the input data are chopped into. For MD5 that
we use as the hash function, the block size is 512 bits which
can host 4 digests. As a result, computing an internal node of
a 4-degree Merkle tree is not more expensive than computing
a 2-degree Merkle tree internal node in terms of performing
the hash function. Building a 4-degree Merkle tree requires
less hashing operations compared to the other two, hence
smaller per-packet amortized time to build the Merkle tree.
The per-packet generation time grows with more events as
illustrated in Fig. 11. This is expected from the theoretical
analysis which indicates that the time complexity is O(logk n),
where n is the number of events signed under a same Merkle
tree. From Fig. 11, 4-degree Merkle tree is more efficient in
generating the packet due to the fact that appending multiple
hashes from the same level in the Merkle tree in batch is
efficient. We evaluate the per-packet generation time with fixed
height h = 3 to validate its asymptotic time complexity.
As shown in TABLE VI, the packet generation overhead is
more prominent with larger tree degree.

D. Prototype Experiment in Raspberry Pi

We conduct experiments on a Raspberry Pi 3 Model B
board, which is one of the most popular IoT device platforms.
We compare the power and time consumption of the two
signature schemes we propose in this paper, namely GSC and
DTC. The two metrics are especially important for resource-
constrained IoT devices. The experiment setup is exactly
the same as the PC experiment which has been described
in Sec. VIII-C, except that the program is running in one
Raspberry Pi instead of a more powerful PC. We utilize
an inline power meter to measure the power consumption
overhead to finish the signing process. The voltage remains
at 5.1V all the time but the current jumps from 0.23A in
the idle state to 0.37A when the signing program starts.
In our experiment, the energy consumption due to the signing
program is calculate as Esign = Etotal − Pidle × time,
where we can read Etotal and time from the power meter.
Pidle is computed as 5.1V × 0.23A = 1.18W . As we have
shown in Sec. VIII-C, the signing speed for DTC is limited
by the available memory space. The situation is also true on
Raspberry Pi where the signing speeds for both GSC and DTC
are about 10 times slower than those in the PC experiment.
We illustrate the signing speed in Fig. 12. When the program
is running, the voltage and current remain stable, hence the
power. Therefore, the power consumption is proportional to
the program running time. For DTC, the limited memory space
elongates the programming running time, leading to higher
power consumption, as depicted in Fig. 13.

Fig. 12. Signing thrpt. at RPi

Fig. 13. DTC energy comsumption

TABLE VII

SIMULATION RESULTS REGARDS THE NUMBER OF EVENTS

E. Prototype Experiment With Sampling Protocol

From the prototype experiment without budget limit,
it seems that the space requirement, log n units, at the signer
is trivial, where n is the number of event reports generated
in one sensing device. If the sampling protocol is utilized,
the signing/verifying performance is likely to be limited by
the space available at the coordinator. The spacial cost to host
auxiliary authentication information is B log n, where B could
be very large. Suppose the space available at the coordinator
is C. It is equivalent to the situation where there are C

B units
of space in the signer. Since we have already illustrated
the impact of space in one single signer in Fig. 8, how
signing/verifying throughput changes with varied available
space in the coordinator is not shown for brevity.

We focus more on the potential maximal throughput of
tested signature schemes. We suppose there is enough space at
both the signer and verifier sides. The events sent to the coor-
dinator are used for signing performance evaluation whereas
the verification algorithm is fed by the events saved at the
cloud. The number of events involved is listed in TABLE VII.

Fig. 14 shows the throughput comparison between GSC
and DTC. We do not put results for sign-each approach in this
figure because its throughput is much slower than the other two
and we focus more on the visualization of more comparable
results. From all performance evaluation experiments, sign-
each approach is more than 50X slower than the other two.
Since each day is one epoch and there are only 7 sensing
devices, there are only 90 × 7 = 630 encryption/decryption
operations for both GSC and DTC. For all the experiments
conducted in this subsection, GSC is faster than DTC in terms
of both signing and verifying. This is because processing an
event in GSC is simpler than tree traversal in DTC, but not
more hashing operations. We can verify this conjecture by
analyzing the performance comparison in Fig. 14. We can see
that performance gap between GSC and DTC becomes more
prominent when quicker message digest function is applied.
For example, the throughput gap increases from 0.35M events
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Fig. 14. Throughput comparison with different parameter settings.

per second to 0.7M events per second if MD5 replaces
SHA256 in the prototype emulation experiment using DSA
signature and the budget limit is 500. The throughput decreases
when the value of budget limit is reduced as implicated
in Fig. 14, because the same number of encryption/decryption
operations are amortized to fewer events.

IX. RELATED WORK

Many lightweight signature schemes are developed over the
years which are especially attractive to IoT devices.

TESLA [50] and its variants [51], [52] achieve message
authenticity while retaining their computational efficiency by
delayed symmetric key disclosure. These methods require tight
synchronization of the sender and the receiver. Therefore,
they are not applicable to the network communication model
described in this paper, where the IoT device does not send
messages to the data consumer directly.

Another category is based on one-time signature (OTS),
including BiBa [53] and HORS [54]. The high computation
efficiency is achieved by one-way functions without trapdoors.
However, OTS-based methods require pre-distribution and
retransmission of large size public keys, which pose a heavy
burden on IoT devices, especially for those deployed in the
wild without wired connections.

To shift the expensive signature generation to the offline
phase is also one direction towards efficient signature schemes.
Yavuz [55] proposed to synthesize digital signatures from pre-
generated templates. This method however is limited for highly
structured data. Furthermore, this method generates a large
space overhead at the sender side.

A large population of works rely on amortization of one
signature cost over multiple messages. Both DTC and GSC fall
into this category. However, existing works [27], [56], [57] do
not consider the issue of uniformity and consume more space
than the solutions proposed in this paper.

X. DISCUSSION AND FUTURE WORK

A plausible problem of the evaluation discussion is that we
completely ignore the space cost to store events themselves. In
fact, these events can be saved in the disk whereas the space
discussed in Sec. VIII must resides in the memory.

Different sensing devices may send generated data to the
coordinator at vastly different speed. The video surveillance
system [10] continuously generates tons of data whereas
human-motion detector [58] sends much less data occasionally.
To avoid starvation of devices, the sampling protocol discussed
in this paper can be easily generalized to allow weighted items.
How to automatically set weights for different devices with
little human intervention would be our future work.

Network latency attributed to propagation and processing
is inevitable. Network latency causes lagged round promotion
which in turn results in substantial network bandwidth waste
due to the transmission of events that should be discarded
at devices locally. In our future work, we plan to design a
queuing principle which prioritizes the coordinating messages
to favor the devices sending more events thus to reduce the
network bandwidth waste.

Our sampling and signature scheme can be also applied
to other areas beyond IoT data storage. It is increasingly
important to monitor networks at geographic locations in
a scalable way [59]. Our sampling protocol and signature
scheme provide the opportunity to relieve the burden of the
network, where the local collector acts as the coordinator and
periodically transmits the sampled packets to the global traffic
analytic. Since the sampled packets may be transmitted over
the Internet at 10/40 Gbps, the memory usage of switches
becomes critical. GSC with constant space overhead is
especially suitable in this case.

XI. CONCLUSION

We summarize the new challenges of the IoT data
communication with authenticity and integrity and argue that
existing solutions cannot be easily adopted. We design a
system aimed to address these challenges. This system is
able to uniformly sample data from sensing devices and then
securely store the data in the cloud while respecting resource
budget constraint. The sub-systems in our paper symbiotically
operate together and this system is efficient in terms of
space and time, as is validated by extensive simulation and
prototype emulation experiments.

APPENDIX A
RANDOM PERMUTATION

Random permutation pseudocode is presented in
Algorithm 3.

APPENDIX B
COLLISION RESISTANCE OF TREE

CHAINING AND STAR CHAINING

Let function H : {0, 1}l(n) → {0, 1}n, where l(n) > n.
H(·) is collision resistant if the following two conditions are
satisfied.

• H(x) can be computed in polynomial time.
• Pr[(x 	= x�)

�
(H(x) = H(x�))] ≤ negl(n), where

negl(·) represents a negligible function.
For Tree Chaining, suppose the underlying hash function

to compute internal node is H : {0, 1}2n → {0, 1}n. For
simplicity, we assume the tree is full and the height is h. The
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Algorithm 3: Random Permutation
Input: An array of of events E; A seed s for the

pseudorandom number generator; A positive
number n

Output: A list of n elements from E
1 l← E.size();
2 rng.init(s); // Initialize random number generator
3 for i← 0 to n− 1 do
4 j ← random integer with i � j � l − 1;
5 swap (E[i], E[j]);
6 end
7 return E[0:n-1]; // return first n elements

i−th leaf node is denoted as mi. We could view Tree Chaining
as a hash function H � : {0, 1}∗ → {0, 1}n such that the root
is H �(m1, m2, · · · , m2h).

We will prove that H �(·) is collision resistant. Assume that
there is a probabilistic polynomial-time attacker A(s) could
output x = (m1, m2, · · · , m2h) 	= x� = (m�

1, m
�
2, · · · , m�

2h)
such that H �(x) = H �(x�) with probability ε(n). Collision
of H �(x) means that the two root nodes corresponding to x
and x� are equal. Suppose one internal node computed from
x is equal to its counterpart computed from x�. There are two
possible cases for their children nodes:

1) At least one node computed from x differs from its
counterpart computed from x�.

2) The nodes for x are identical to those for x�.
If case 1 is true, one collision of H(·) is found which con-

tradicts the initial assumption that H(·) is collision resistant.
If case 2 is true, we recursively compare nodes of lower levels
until case 1 becomes true. At least one time of case 1 should
be encountered; otherwise x = x�. Therefore, we prove
by contradiction that H �(·) of Tree-chaining is collision
resistant.

The proof of Star Chaining being collision resistant is
similar to the one for Tree Chaining: If an adversary outputs
a collision, then we can use the result to find the collision of
the underlying hash function. We omit the reduction details
for brevity.

APPENDIX C
PROOF FOR DEFENDING AGAINST

DISHONEST COORDINATORS

In this section, we will prove how the local counters
from IoT devices are used for audit correctness of the sam-
pling protocol even if the coordinator is not assumed to be
trustworthy. Our analysis assumes that any sensing device,
whether compromised or not, does not collude with the
coordinator.

Proof: Suppose the sampling protocol stops at round j
at the end of the epoch, which means all counters associated
with sample block i (i ≥ j) are finally stored in the cloud.
We denote

�
k lki = l�i (i ≥ j) and hence

g =
i≥j�

i

l�i =
i≥j�

k,i

lki ≤ B (1)

On the other hand, the necessary condition for sam-
pling algorithm to promote from round j − 1 to j is that

�i≥j−1
i l�i > B. Since ∀i, �k lki ≥ l�i,

i≥j−1�

k,i

lki ≥
i≥j−1�

i

l�i > B (2)

Combining Eq. (1) and Eq. (2), it is not hard to reach

j = argmin
ĵ

⎧
⎨

⎩

i≥ĵ�

k,i

lki ≤ B

⎫
⎬

⎭
(3)

As a result, the final round and therefore the sample blocks
should be stored in the cloud can be computed from the
counters.
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