
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

COIN: An Efficient Indexing Mechanism for
Unstructured Data Sharing Systems

Junjie Xie , Chen Qian, Senior Member, IEEE, Member, ACM,

Deke Guo , Senior Member, IEEE, Member, ACM,
Minmei Wang , Graduate Student Member, IEEE,

Ge Wang , and Honghui Chen

Abstract— Edge computing promises a dramatic reduction in
the network latency and the traffic volume, where many edge
servers are placed at the edge of the Internet. Furthermore, those
edge servers cache data to provide services for edge users. The
data sharing among those edge servers can effectively shorten
the latency to retrieve the data and further reduce the network
bandwidth consumption. The key challenge is to construct an
efficient data indexing mechanism no matter how the data is
cached in the edge network. Although this is essential, it is
still an open problem. Moreover, existing methods such as the
centralized indexing and the DHT indexing in other fields fail
to meet the performance demand of edge computing. This paper
presents a COordinate-based INdexing (COIN) mechanism for
the data sharing in edge computing. COIN maintains a virtual
space where switches and data indexes are associated with their
coordinates. Then, COIN distributes data indexes to indexing
edge servers based on those coordinates. The COIN is effective
because any query request from an edge server can be responded
when the data has been stored in the edge network. More
importantly, COIN is efficient in both routing path lengths
and forwarding table sizes for publishing/querying data indexes.
We implement COIN in a P4 prototype. Experimental results
show that COIN uses 59% shorter path length and 30% less
forwarding table entries to retrieve data indexes compared to
using Chord, a well-known DHT solution.

Index Terms— Data indexing, data sharing, edge computing,
software-defined networking.

I. INTRODUCTION

EDGE Computing has been proposed to shift computing
and storage capacities from the remote Cloud to the

network edge in close proximity to mobile devices, sensors,

Manuscript received March 21, 2019; revised January 15, 2021; accepted
August 23, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor Y. Guan. This work was supported in part by the National Key
Research and Development Program of China under Grant 2018YFE0207600,
in part by the National Natural Science Foundation of China under
Grant U19B2024 and Grant 62002284, and in part by the Tianjin Science
and Technology Foundation under Grant 18ZXJMTG00290. (Corresponding
author: Deke Guo.)

Junjie Xie is with the Institute of Systems Engineering, AMS, PLA, Beijing
100141, China (e-mail: xiejunjie06@gmail.com).

Chen Qian and Minmei Wang are with the Department of Computer
Science and Engineering, University of California at Santa Cruz, Santa Cruz,
CA 95064 USA (e-mail: cqian12@ucsc.edu).

Deke Guo and Honghui Chen are with the Science and Technology Labo-
ratory on Information Systems Engineering, National University of Defense
Technology, Changsha, Hunan 410073, China (e-mail: guodeke@gmail.com).

Ge Wang is with the Department of Computer Science and
Engineering, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
wangge@stu.xjtu.edu.cn).

Digital Object Identifier 10.1109/TNET.2021.3110782

and end users [1], [2]. Meanwhile, it promises a dramatic
reduction in network latency and traffic volume, tackling
the key challenges for materializing 5G vision. Terms such
as ‘cloudlets’, ‘micro data centers’, and ‘fog computing’
have been used in the literature to refer to similar edge-
located services [3]–[6]. In edge computing, edge servers (also
called as edge nodes) can perform computation offloading,
data storage, data caching and data processing for edge
users.

However, unlike Cloud data center servers, edge servers
are usually widely geographically distributed and have het-
erogeneous computation and storage capacities [2], [3], [5].
In edge computing, when an edge user sends a data request,
the request is first directed to the nearest edge server. If the
edge server has cached the data, it will return the data to
the edge user, otherwise, it will retrieve the data from the
remote Cloud for the edge user. However, retrieving data from
the Cloud would incur a large amount of backhaul traffic
and the long latency. Furthermore, retrieving the data from
those neighboring edge servers that have cached the required
data can efficiently reduce the bandwidth consumption and the
latency of request response, as shown in the literature [7], [8].
Therefore, there is an urgent need to study the data sharing
among edge servers.

To enable the data sharing, the key challenge is to achieve
the data index, which indicates the data location in the edge
computing environment. However, it remains an open problem,
and an efficient data indexing mechanism is very essential.
Some earlier work about the data indexing in other computing
environments is divided into three categories. The first one is
the full indexing [9] where each edge node maintains a full
index for all data in the edge network. The main drawback is
that the bandwidth cost is too high to maintain the full index
since each data location needs to be transferred to all edge
nodes by the broadcast or the multicast. The second one is the
centralized indexing [10] where a dedicated indexing server is
needed to maintain all the data indexes. However, the cen-
tralized indexing suffers from the performance bottleneck and
drawbacks in the fault-tolerance and the scalability. The last
one is the Distributed Hash Table (DHT) indexing [11], which
has been extensively studied in Peer-to-Peer (P2P) networks
and could be a candidate solution for the data sharing in
edge computing. However, our observation shows that the
DHT indexing goes through a significantly longer path to
retrieve a data index compared to the shortest path between
the corresponding edge nodes.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8784-0031
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0002-0523-440X
https://orcid.org/0000-0002-3845-1646

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

In this paper, we propose an efficient data indexing mech-
anism, called COordinate-based INdexing (COIN), for the
data sharing in the edge computing environment. Those data
from the Cloud and edge devices are locally cached in edge
servers, and no global caching rules are required in the
whole edge network. Therefore, for the data sharing of those
unstructured data, this is an unstructured data sharing system.
To achieve the COIN mechanism, the control plane of the
network maintains a virtual 2-dimensional (2D) space where
each switch is associated with a coordinate. Furthermore,
each data index is also mapped into a coordinate in the
virtual space. Then, the data index is stored in the indexing
edge server that is directly connected to the switch whose
coordinate is closest to the coordinate of the data index
in the virtual space. The COIN is an extension of DHT.
Those data indexes are distributed into edge servers based
on the hash values of data indexes However, there are some
differences between the traditional DHT and the COIN. The
edge servers need to maintain the finger tables [11] for the
lookup of data indexes under the traditional DHT. Meanwhile,
for each requested data index, the lookup request needs to
go through log(n) overlay hops between edge servers. Under
the COIN mechanism, only one overlay hop is needed to
locate each data index with the support of programmable
switches.

The COIN is effective because any query request from an
edge server can be responded to when the data has been cached
in the edge network. More importantly, the lookup speed
shows the efficiency of the COIN mechanism, which achieves
the shortest path lengths and the fewest forwarding table
entries in switches to retrieve the data indexes. Furthermore,
to enhance the robustness of the indexing systems, multiple
data copies and multiple index copies are essential in the
edge network. In this case, the key challenge is how to
quickly retrieve the data index and the data item from the
nearest edge server. To enable these advantages, our COIN
mechanism embeds the path length between switches into
the distance between coordinates in the virtual space. After
that, the data requester can instantly retrieve the data index
and the data from the nearest edge servers by comparing
their distances in the virtual space without sampling all
copies.

We conducted extensive experiments, using both P4 imple-
mentation and simulations, to evaluate the performance of the
COIN mechanism. Experimental results show that the COIN
mechanism uses 30% less forwarding table entries and 59%
shorter path length to retrieve data indexes compared to using
the well-known DHT indexing mechanism [11].

In summary, we make the following major contributions:
1) We propose a coordinate-based indexing mecha-

nism (COIN) for the unstructured data sharing in the
edge computing environment. The COIN is effective and
efficient due to not only the shortest path length but
also the fewest forwarding table entries in switches for
searching data indexes.

2) We design an efficient distance embedding algorithm,
Algorithm 1, which makes any edge server can instantly
select the optimal index copy and the optimal data copy
when multiple index copies and multiple data copies are
available in the edge network.

Fig. 1. Retrieving data in the edge computing environment.

3) We implement the COIN mechanism in P4, and further
evaluate its performance through large-scale simulations.
The experiment results show the efficiency and effective-
ness of the COIN mechanism for not only searching the
data index but also retrieving the data.

The rest of this paper is organized as follows. In section II,
we introduce the motivation and the design overview of
this paper. In Section III, we detail the COIN mechanism.
Section IV presents the optimization designs of the COIN
mechanism for multiple data copies and multiple index copies.
In Section V, we evaluate the performance of the COIN
mechanism based on a small-size testbed and large-scale
simulations. We introduce the related work and conclude this
paper in Section VI and Section VII, respectively.

II. MOTIVATION AND OVERVIEW

A. Motivation

Edge computing is to offload computing and storage to
the network edges so as to enable computation-intensive
and latency-critical applications. The promised gains of edge
computing have motivated extensive efforts in both academia
and industry on developing the technology [2], [12], [13].
In edge computing, each edge node caches some data to
provide services for those edge users located in a given area.
As shown in Fig. 1, when user(1) sends a data request,
the request is first directed to the edge node that is nearest
to the Access Point (e.g. a base station). If the edge node has
cached the data, it will immediately return the data to the edge
user, otherwise, it will retrieve the data from the remote Cloud
for the user. Meanwhile, the data will be also cached in the
corresponding edge node. It is no doubt that retrieving the
data from the remote Cloud consumes too much bandwidth
and incurs significantly long latency.

In edge computing, the need for data sharing mainly comes
from two folds. One is that many popular contents in the Cloud
are asynchronously and repeatedly requested by different edge
users. It has been predicted by Cisco that mobile video
streaming will occupy up to 72% of the entire mobile data
traffic by 2019 [12]. One unique property of such services is
that the content requests are highly concentrated. Motivated
by this fact, wireless content caching was proposed to avoid
the frequent retrieval of the same contents [14]–[16]. Another
one is that the edge servers can deliver those data generated

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 3

Fig. 2. Packet forwarding under different data indexing mechanisms.

by some edge devices to other edge devices that are located
in different geographical areas. It is estimated that tens of
billions of edge devices will be deployed in the near future, and
their processor speeds are growing exponentially, following
Moore’s Law [12]. A large amount of edge devices will
produce the data that is first cached in those edge servers [9].
The development of the edge devices further promotes the data
sharing and the repeated using of the data among edge servers.
Therefore, there is an urgent need to study the data sharing
among edge servers.

Meanwhile, the data sharing among multiple edge nodes
can efficiently reduce the latency of data retrieval and the
bandwidth consumption in the backhaul network [7]. Given
a data sharing framework, when an edge node receives a data
request, it will first lookup if the data has been cached in
itself or other edge nodes in the edge network. If the data has
been cached in the edge network, retrieving the data from the
closer edge node is more efficient than from the remote Cloud.
As shown in Fig. 1, when user(2) requests the same data as
user(1), user(2) can retrieve the data from the corresponding
edge node instead of the remote Cloud. Furthermore, when
retrieving a data from other edge nodes fails to meet the
low-latency demand, the edge node closest to the edge user
will cache the data again. After that, there are multiple data
copies in the edge network. In this case, the key challenge
is how to quickly obtain the data copy that is closest to the
data requester. Therefore, the data sharing framework needs
to efficiently support multiple data copies. Meanwhile, for the
robustness of the indexing system, multiple index copies could
be maintained for each shared data. It is essential to optimize
the indexing system for supporting multiple index copies.

B. Design Overview

To achieve the data sharing among edge nodes, the key
challenges are where to place data indexes, how to search
data indexes, and how to retrieve the data after getting a
data index. Our COIN mechanism mainly solves the first
two problems. The routing problem from the data requester
to the data location that is indicated by the data index is
orthogonal to our work. When a data requester gets a data
index that indicates a data location, the data can be retrieved
from the location by using the shortest path routing or other
more efficient routing schemes. In the edge network, there
are multiple edge nodes where each edge node consists of
multiple edge servers. Furthermore, those edge nodes cache
data items from the Cloud or edge devices to provide services

for edge users. We use the following terms to describe the
data sharing framework throughout the paper:

1) An ingress edge server refers to the closest edge server
to a Base Station (BS). All data requests from the BS
are firstly forwarded to this edge server.

2) A storing edge server refers to an edge server that stores
some shared data items.

3) An indexing edge server refers to the edge server that
stores the indexes of cached data at storing edge servers.
Note that each edge node determines one of its edge
servers as the indexing edge server.

4) An Indirect edge server refers to an intermediate edge
server that forwards any query request of a data index,
not including the ingress edge server and the indexing
edge server. Note that the indirect edge server is only
employed under the traditional DHT indexing.

We explain the design choices for the data indexing and
compare those choices with representative alternative designs
to illustrate why we make those choices. To efficiently support
the data indexing in edge computing, a direct design is to
maintain a full Data Indexing Table (DIT) of all shared
data in each edge node in the edge network. As shown
in Fig. 2(a), on top of the full indexing mechanism, each
edge node can quickly know if a data item exists in the edge
network. However, the disadvantage of the full indexing is
that the bandwidth cost of maintaining the full indexing is too
huge. When an edge node caches a new data item, it needs
to publish the data location to all edge nodes in the edge
network.

The second choice is to choose a dedicated edge server to
provide the centralized indexing service for all shared data
in the edge network as shown in Fig. 2(b). In this scenario,
the dedicated indexing server stores all data indexes, and each
edge node forwards the data request to the unique indexing
server. That is, only the dedicated indexing edge server needs
to store the full DIT. However, an obvious flaw of this
design is that the centralized indexing server will become
the performance bottleneck. Furthermore, it also suffers from
worse fault tolerance and load balance.

The third design is the DHT indexing mechanism, which has
been extensively studied in peer-to-peer (P2P) networks [10],
[11], [17], [18]. The DHT indexing is a distributed index-
ing mechanism, and each indexing edge server just stores
partial DIT. Meanwhile, under the traditional DHT indexing
mechanism, each edge server maintains a finger table [11] for
the lookup of data indexes. The DHT indexing mechanism

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

COMPARISON OF DIFFERENT INDEXING MECHANISMS

employs multiple overlay hops to retrieve a data index where
each overlay hop means the shortest path between two edge
servers. More precisely, for any query, the searching process
usually involves log(n) forwardings [18] where n is the
number of edge nodes in the edge network. That is, the ingress
edge server could forward each incoming packet to a series of
intermediate indirect edge servers before reaching the final
indexing edge server, as shown in Fig. 2(c), where each
indirect edge server stores the finger table to lookup the data
index. It is no doubt that the longer path increases the query
processing latency, server load and consumes more internal
link capacity in the edge network.

In this paper, our solution is a COordinate-based INdex-
ing (COIN) mechanism, which just takes one overlay hop
to search the data index as shown in Fig. 2(d). Furthermore,
it achieves the benefits of the distributed data indexing, and
needs less forwarding entries at each switch to support the data
indexing than the DHT indexing mechanism. The features of
different indexing mechanisms are concluded in Table I. Note
that our COIN mechanism fully utilizes the advantages of
software-defined networking (SDN) [19], [20], where the con-
trol plane can collect the network topology and state including
switch, port, link, and host information [21]. When we apply
the principle of SDN to the edge computing, the network is
called a Software-Defined Edge Network (SDEN). Fig 3 shows
the framework of the COIN mechanism, including the main
functions in the control plane and the switch plane. In SDN,
the network management is logically centralized in the control
plane consisting of one or multiple controllers [22] which
generate forwarding table entries for switches. The switches
in the switch plane only forward packets according to the
installed entries derived from the controller.

To achieve the COIN mechanism, the control plane main-
tains a virtual 2D space where each switch is associated
with a coordinate. As shown in Fig 3, the control plane first
collects the network topology from the switch plane, and then
the coordinates of switches are calculated in Section III-A.1.
The control plane constructs a Delaunay Triangulation (DT)
graph [23], [24] in Section III-B.1 to connect those points,
which indicate switches’ coordinates in the virtual space.
Further, the control plane inserts forwarding entries into the
forwarding tables of switches where each forwarding entry
indicates the coordinate of a neighboring switch. More pre-
cisely, the index of each shared data is also assigned to
a coordinate in the virtual space based on its identifier in
Section III-A.2. Then, the data index is greedily forwarded
to the switch whose coordinate is the nearest to that of the

Fig. 3. The framework of the COIN mechanism over a software-defined
edge network.

data index in the virtual space in Section III-B.2. Finally,
the switch forwards the data index to the only indexing edge
server among all directly connected edge servers. Note that
the performance and scalability of the control plane is the key
to the COIN mechanism. Much research has been conducted
to improve the performance and scalability of the control
plane [20], [25], [26].

III. COORDINATE-BASED INDEXING

A. Determining Coordinates

1) Determining the Coordinates of Switches: The control
plane can obtain the network topology and state by collecting
switch, port, link, and host information [19], [21]. Then,
the shortest path matrix between switches can be firstly
calculated by the control plane. However, the key challenge
is how to calculate the coordinate matrix of n points where
the shortest path lengths between n switches can be indirectly
reflected by the distances between points in the virtual space.
In other words, we need to solve the problem of finding
a point configuration that represents a given scalar-product
matrix [27]. In matrix notation, this amounts to solving the
equation:

B = XX ′, (1)

where X is the n×m coordinate matrix of n points in
m-dimensional space, and X ′ is the transpose of matrix X .

Every n×n matrix B of real numbers can be decomposed
into a product of several matrices. The eigendecomposition can
be constructed for most matrices, but always for symmetric
ones. Formally,

B = QΛQ′, (2)

where Q is orthonormal (i.e., QQ′ = Q′Q = I) and Λ is
diagonal.

Every n×m matrix X can be decomposed into

X = PΦQ′, (3)

Equation (3) indicate a singular value decomposition (SVD).
Where P is an n×n orthonormal matrix, (i.e., P ′P = I), Φ is
an n×m singular value matrix, and Q is an m×m orthonormal
matrix, (i.e., Q′Q = I).

Assume that we know the decomposition of X as given in
Formula (3). Then,

XX ′ = PΦQ′QΦP ′ = PΦΦP ′ = PΦ2P ′, (4)

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 5

which is just the eigendecomposition of XX ′ based on Equa-
tion (2). This proves that the eigenvalues of XX ′ are all
nonnegative because they consist of φ2

i and squared numbers
are always nonnegative. Furthermore, suppose that we do an
eigendecomposition of B = QΛQ′. We know that scalar prod-
uct matrices are symmetric and have nonnegative eigenvalues
based on Equations (2) and (4). Therefore, we may write
B = (QΛ1/2)(QΛ1/2)′ = XX ′, where Λ1/2 is a diagonal
matrix with diagonal elements λ

1/2
i . Thus, X = QΛ1/2 gives

coordinates that reconstruct B.

Algorithm 1 Calculate the Coordinates of Switches in the
Virtual Space While Achieving the Distance Embedding
Require: The shortest path matrix L.
Ensure: The coordinates of the switches U .
1: Compute the squared ditance matrix L(2) = [l2ij].
2: Construct the scalar product matrix B by multiplying the

squared ditance matrix L(2) with the matrix J = I − 1
nA.

That is B = − 1
2JL(2)J , where n is the number of

switches, and A is the squared matrix with all elements
are 1. This procedure is called double centering.

3: Determine the m largest eigenvalues λ1, λ2, . . . , λm and
corresponding eigenvectors e1, e2, . . . , em of the matrix B
(where m is the number of dimensions).

4: The coordinates of the switches U = QmΛ1/2
m , where Qm

is the matrix of m eigenvectors and Λm is the diagonal
matrix of m eigenvalues of the matrix B, respectively.

Based on the above analysis, we design the embedding algo-
rithm of path lengths to calculate the coordinates of switches in
the virtual space as shown in Algorithm 1. Algorithm 1 follows
the principle of the classic multidimensional scaling [28],
which can preserve the Euclidean distances between coordi-
nates as well as possible. First, Algorithm 1 takes an input
matrix giving network distances between pairs of switches,
which is known to the control plane of the network [21].
The shortest path matrix L = [lij], where lij is the length
of the shortest path between the ith and jth switches. Then,
Algorithm 1 utilizes the fact that the coordinate matrix can
be derived by eigenvalue decomposition from B = UU ′

where the scalar product matrix B can be computed from
the distance matrix L by using the double centering [28] in
Step 2 of Algorithm 1. Last, the coordinates of the switches
U in the virtual space are obtained by multiplying eigenvalues
and eigenvectors in Step 4 of Algorithm 1. Based on the Algo-
rithm 1, the coordinates of switches in the virtual space can be
determined. After that, Algorithm 1 can preserve the network
distances between switches as well as possible. In detail,
the coordinates of switches {u1, u2} is in the output U of
Algorithm 1. The real coordinates of switches {x1, x2} is in
the matrix X in Equation (1). Thus, ||u1 − u2||2≈||x1 − x2||2.

2) Determining Coordinates for Data Indexes: The coordi-
nate of a data index is achieved by the hash value H(d) of the
identifier of the data index d. In this paper, we adopt the hash
function, SHA-256 [29], which outputs a 32-byte binary value.
Note that other hash functions can also be used. Meanwhile,
in the case of a hash collision, it just means that two or more
data indexes are assigned to the same coordinate and stored
in the same indexing edge server. Furthermore, the hash value

Fig. 4. The formulation of the DT graph.

H(d) is reduced to the scope of the 2D virtual space. We only
use the last 8 bytes of H(d) and convert them to two 4-byte
binary numbers, x and y. We limit that the coordinate value
ranges from 0 to 1 in each dimension. Then, the coordinate of a
data index in 2D is a two-tuple (x

232−1 , y
232−1). The coordinate

can be stored in decimal format, using 4 bytes per dimension.
Hereafter, for any data identifier, d, we use H(d) to represent
its coordinate.

B. Publishing Data Indexes

To publish data indexes, it is necessary to introduce the
DT graph. A unique feature of the DT graph is that no other
points exist in the circumcircle of any triangle. As shown
in Fig. 4, the left graph is not a DT graph because point 4 is
in the circumcircle of triangle <1, 2, 3>. However, the right
graph is a DT graph. Recall that greedy routing on a DT
graph provides the property of guaranteed delivery, which
is based on a rigorous theoretical foundation [23], [30]. To
achieve the guaranteed delivery of the COIN mechanism,
the control plane first constructs a DT graph, which connects
all switches’ coordinates in the virtual space. After that, each
switch greedily forwards a data index to its neighbor, whose
coordinate is closest to the coordinate of the data index.

1) DT Construction: Given a set of switches and their
coordinates in a set of points P , we adopt the randomized
incremental algorithm [31] to construct the DT DT (P) in the
2D virtual space. First, an appropriate triangle boundingbox is
constructed to contain P . Then, those points in P are inserted
in random order, and a DT corresponding to the current point
set is maintained and updated throughout the whole process.
Last, the boundingbox and relative triangles that contains any
vertex of the boudingbox triangle are removed. Meanwhile,
it is necessary to ensure that the union of all simplices in the
triangulation is the convex hull of those points.

Consider that DT (v1, v2, . . . , vi−1) formed by inserting all
previous points v1, v2, . . . , vi−1 is already a DT. The change
caused by inserting vi is adjusted and DT (v1, v2, . . . , vi−1)∪
vi is made a new DT (v1, v2, . . . , vi). The adjustment process
is as follows. First, we determine which triangle (or edge)
vi falls on, and then connect vi with the three vertices of
the triangle to form three triangles (or connect the vertices
of two triangles of the common edge to form four triangles).
Since the newly generated edges and the original edges may
not be Delaunay edges, we would make a flipping [32] to
make them all Delaunay edges to get DT (v1, v2, . . . , vi). For
example, in Fig. 4, there is a DT (1, 2, 3, 4). We change the
common edge <2, 3> to the common edge <1, 4> to produce
two triangles that do meet the Delaunay condition when two
original triangles do not meet the Delaunay condition. This
operation is called a flipping. Based on the above analysis,
the time complexity of the DT construction is O(n) where n
is the number of switches in the network.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. The principle of forwarding data indexes.

Algorithm 2 The Greedy Forwarding at Switch u

1: For each physical neighbor v, Rv = Dis(v, d), Euclidean
distance from v to d in the virtual space;

2: For each DT neighbor ṽ, Rṽ = Dis(ṽ, d), Euclidean
distance from ṽ to d.

3: Rv∗ = min{Rv, Rṽ};
4: if Rv∗<Dis(u, d) then
5: Forward the packets to v∗ directly if v∗ is a physical

neighbor or by the virtual link to v∗ if v∗ is a DT
neighbor;

6: else
7: Forwards the data index d to its indexing edge server;
8: end if

It is worth noting that a switch could not be directly con-
nected with its DT neighbor. As shown in Fig. 5, switch 3 is a
DT neighbor of switch 1 in the virtual space. However, there is
no a directly physical link between switch 1 and switch 3 in the
data plane. Therefore, to achieve the guaranteed delivery, each
switch maintains two kinds of forwarding entries. The first one
makes it forward packets to its physical neighbors, while the
other one makes it forward requests to its DT neighbors.1 The
switches that are not directly connected to an indexing edge
server would not participate in the construction of the DT.
Those switches are just used as the intermediate switches to
transfer data indexes to those DT neighbors.

For a switch u, the forwarding table Fu is used to forward
packets to DT neighbors. Each entry in Fu is a 4-tuple
<src, pred, succ, des>, which is a sequence of switches with
src and des being the source and destination switches of a
path, and pred and succ being the predecessor and successor
switches of switch u in the path. A tuple in Fu is used by
u for message forwarding from src to des. For a specific
tuple t, we use t.src, t.pred, t.succ, and t.des to denote
the corresponding switches in the tuple t. In the next section,
we will introduce how to forward a data index to an indexing
edge server based on the DT graph.

2) Forwarding Data Indexes: The switches are associated
with their coordinates in a virtual space. A switch knows
the coordinates of itself, its physical neighbors and its DT
neighbors. The switch can obtain the coordinates of such
switches based on its forwarding table entries where we utilize
the P4 switch [33], [34]. Multiple match-action tables are

1Hereafter the DT neighbors of a switch do not include its physical
neighbors.

declared in the P4 switch where the standard table includes
two properties: key and action [34]. Meanwhile, the action
could include some parameters, which are provided by the
control plane. Recall that the coordinates of switches are
calculated by the control plane in Section III-A.1. Then, the
control plane converts the coordinates of the switches into
the forwarding entries and inserts those forwarding entries
into the corresponding switches. More precisely, the control
plane inserts the parameters of an action that include x and
y values of a coordinate into a match-action table through a
table_add command. After that, in each match-action stage,
the switch can calculate the distance between a pair of
coordinates of a neighboring switch and a data index in the
virtual space.

When a data item is cached by a storing edge server. The
edge server will publish the corresponding data index to an
indexing edge server. The data index is firstly sent to a switch.
The switch, say u, uses the virtual coordinates of its physical
and DT neighbors and the coordinate p = H(d) of the
data index d to compute estimated distances. Note that a DT
neighbor could also be its physical neighbor. But, here, the DT
neighbors are those neighbors except for the physical neigh-
bors. Each switch performs the greedy forwarding based on the
DT graph constructed by the control plane in Section III-B.1.
The greedy forwarding at switch u is shown in Algorithm 2.
For each physical neighbor v, switch u computes the estimated
distance Rv = Dis(v, d), which is the Euclidean distance
from v to d in the virtual space. For each DT neighbor ṽ,
switch u computes the estimated distance from ṽ to d by Rṽ =
Dis(ṽ, d). Switch u selects the neighbor switch v∗ that makes
Rv∗ = min{Rv, Rṽ}. If Rv∗<Dis(u, d), switch u sends the
packet to v∗ directly if v∗ is a physical neighbor or by the
virtual link to v∗ if v∗ is a DT neighbor. As shown in Fig. 5,
the DT neighbor switch 3 of switch 1 is closer to the point
d in the virtual space. Therefore, switch 1 forwards the data
index d to switch 3. Note that there is a virtual link between
switch 1 and switch 3. The real path traversed by the data index
is the path <1, 4, 3> for the virtual link <1, 3> in Fig. 5.
If Rv∗<Dis(u, d) is not satisfied, switch u is closest to the
coordinate of the data index. Then, switch u directly forwards
the data index to its indexing edge server. In the following
paragraph, we further introduce the data transmission in a
virtual link.

Forwarding to a DT neighbor. A switch connects to
one of its DT neighbors by a virtual link based on the DT
graph in Section III-B.1. A virtual link is a physical path,
which is utilized to transfer packets from a switch to one
of its DT neighbors. When switch u receives a packet that
is being forwarded in a virtual link, the packet is processed
as follows. Assume that a switch u has received a data
index d to forward. Switch u stores it with the format: d =
<d.des, d.src, d.relay, d.index> in a local data structure,
where d.des is the DT neighboring switch of the source
switch d.src, d.relay is the relay switch, and d.index is the
payload of the data index. When d.relay �=null, the data index
d is traversing a virtual link.

The forwarding at switch u is specified by two conditions
and the corresponding actions in Table II. When the first
condition u = =d.des is found to be true, switch u is the
DT neighboring switch, which is the endpoint of the virtual

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 7

TABLE II

THE FORWARDING IN A VIRTUAL LINK AT SWITCH u

link. Then, switch u will continue to forward the data index d
to its neighbor, which is closest to the coordinate of the data
index in the virtual space. In particular, the second condition
is for handling messages traversing a virtual link. When
u = =d.relay, switch u first finds tuple t from the forwarding
table Fu with t.des = =d.des where Fu is defined in
Section III-B.1. Then, switch u revises d.relay = t.succ based
on the matched tuple t. The last step in switch u is to transmit
the data index to d.relay. Based on this setting, messages can
be forwarded to the DT neighbor of a switch. Last, the data
index will be forwarded to the switch whose coordinate is
closest to the coordinate of the data index in the virtual space,
and then, the switch forwards the data index to its indexing
edge server. In addition, a global minimum may not be unique.
The tie will be broken by ranking the x coordinate, then
y coordinate. Furthermore, Theorem 1 states that the COIN
mechanism always succeeds to forward the data index to a
unique switch based on the DT graph in the virtual space, and
this theorem is proved in Appendix 1.

Theorem 1: Based on the DT graph in the virtual space,
the COIN mechanism always succeeds to forward a data index
d to a unique switch, which is closest to the data index in the
virtual space.

The complexity analysis. Algorithm 2 shows how a
switch forwards a data index in the switch plane. Our
COIN mechanism fully utilizes the advantages of SDN [19].
In SDN, the network management is logically centralized in
the control plane consisting of one or multiple controllers,
which generate forwarding table entries for switches. The
switches in the switch plane only forward packets according
to the installed entries derived from the controller. Under our
COIN mechanism, the control plane constructs a DT graph
in Section III-B.1 to connect those points, which indicate the
switches’ coordinates in the virtual space. Further, the control
plane inserts the forwarding entries into the forwarding tables
of switches where each forwarding entry indicates the coordi-
nate of a neighboring switch. Then, the data index is greedily
forwarded to the switch whose coordinate is the nearest to that
of the data index in the virtual space based on Algorithm 2.
The key to establish Algorithm 2 is the DT graph, which
is constructed in the control plane in Section III-B.1. The
time complexity to construct the DT graph is O(n), where
n is the number of switches in the network. Meanwhile,
the communication overhead is mainly caused between the
control plane and the switch plane.

The control plane will send the forwarding table entries
to the switches. This process will consume the network
bandwidth of the links between the control plane and the
switch plane. Therefore, the communication overhead is

related to the number of forwarding table entries. It is worth
noting that our COIN mechanism incurs less communication
overhead than other schemes. Because the COIN mechanism
needs less forwarding table entries than other indexing mecha-
nisms, which has been proved by the experiment results. Under
the COIN mechanism, Algorithm 2 is only dependent on the
DT graph. Given the network topology, the DT graph can be
constructed. After that, the forwarding table entries can be
determined for each switch. Therefore, the process to install
the forwarding table entries will not affect the performance
of the data index lookup. In addition, the time complexity
of Step 1 and Step 2 in Algorithm 2 is O(γ), where γ is
the number of neighbors of switch u. The time complexity
of Step 3 is O(1). The time complexity of Step 5 is O(μ),
where μ is the number of hops from switch u to its DT
neighbor. The time complexity of Step 7 is O(1). Thus,
the time complexity of Algorithm 2 is O(max{γ, μ}), where
max{γ, μ} is a constant number.

C. Storing Data Indexes

Those data indexes are stored in indexing edge servers with
the following pattern, <key, value>, where the key is the data
identifier, the value indicates the address of the corresponding
storing edge server. An indexing edge server can store a large
amount of data indexes. To reduce the latency of searching
indexes, the HashMap [35] is utilized to store those data
indexes in each indexing edge server. The HashMap<key,
value> implementation provides constant-time performance
for the basic operations (get and put). The function put(key,
value) is employed to store a pair of key and value into the
hashmap. Furthermore, the function get(key) is used to get the
data location to which the specified key is mapped. If this
hashmap contains no mapping for the key, it returns null.

D. Querying Data Indexes

So far, we have introduced the procedure of publishing
a data index. Under the COIN mechanism, querying a data
index is similar to the publishing procedure. The querying
procedure is also to use the identifier of data index, and
each switch greedily forwards the querying request to the
switch whose coordinate is closest to the coordinate of the data
index in the virtual space. That is, the switch uses the same
method shown in Section III-B.2 to determine the indexing
edge server, which will respond to the querying request. Then,
the indexing edge server returns the corresponding data index
that indicates the data location in the edge network. Last,
the data requester can retrieve the data using the shortest path
routing or other routing schemes, which is orthogonal to this
work.

IV. OPTIMIZATION DESIGNS FOR MULTIPLE COPIES

A. The Scheme of Multiple Data Copies

An ingress edge server will also cache a data copy when
retrieving the data from other edge servers fails to meet
the low latency demand in the edge computing environment.
Meanwhile, some popular contents could be concentratedly
requested. In this case, for the load balance, multiple data
copies are cached in the edge network. To enable multiple

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 Select the Optimal Index Copy
Require: The number of index copies α, the data index d,

and the switch u that is directly connected with the ingress
edge server.

Ensure: The identifier d + (i− 1) of the optimal index copy.
1: For each index copy j, Rj = Dis(u, d+(i−1)), Euclidean

distance from u to d + (i − 1) in the virtual space;
2: Ri = min{Rj}, 1 ≤ j ≤ α;
3: The ingress edge server transfers the identifier d + (i − 1)

to switch u.

data copies, the data structure <Key, Vector> is used to store
the data index, where there are multiple elements in the Vector
and each element indicates a location of data copy. When an
ingress edge server caches a data copy again, it publishes the
data index to its indexing edge server. Then, the indexing edge
server finds the corresponding Key and adds a new element
into the corresponding Vector. The key challenge is how to
fully exploit multiple data copies to provide better services for
edge users. That is, each ingress edge server hopes to retrieve
the data copy from the closest storing edge server.

However, the path length to each data copy is unknown.
A direct method is to send the probing packets to all data
copies, but it incurs longer latency and more bandwidth
consumption. Recall that we have embedded the distances
between switches into the virtual space in Section III-A.1.
Then, the path length between two edge servers can be
estimated by calculating the distances between the two corre-
sponding switches that are directly connected to the two edge
servers. To enable this advantage, the data location is indicated
by the address of the storing edge server and the coordinate of
the switch that is directly connected to the storing edge server.
After that, when an ingress edge server retrieves a data index
with the format <Key, Vector>, which includes the locations
of multiple data copies. The ingress edge server can instantly
select a storing edge server to retrieve the data with the shortest
path by comparing the distances between the corresponding
switches in the virtual space.

B. The Scheme of Multiple Index Copies

At current, we only consider one data index for each
shared data. However, for the fault tolerance or the load
balance, the edge network could store multiple data indexes
for each shared data. That is, the data indexes of a shared
data can be stored in multiple different indexing edge servers.
To enable this, we further optimize the COIN mechanism
under multiple index copies. We have described that the
indexing edge server for a data index is determined by the
hash value H(d) of the data index in Section III where d
is the identifier of the data index. Now, to enable multiple
index copies, the indexing edge server for the ith index copy
is determined by the hash value H(d+i−1). Note that the data
identifier is a string. The serial number i of the index copy
is converted to a character, and then, the string of the data
identifier and the character are concatenated. Last, the hash
value of the new string uniquely determines the indexing
edge server that will store the index copy. Furthermore, when
there are α index copies, the indexing edge server that stores

Fig. 6. The network topology consists of 6 P4 switches and 12 edge servers.

the αth index copy is uniquely determined by the hash
value H(d + α − 1).

The key challenge is how to quickly obtain the optimal
index copy that is closest to the ingress edge server when
multiple index copies are available. It means that the path of
retrieving the index is shortest. However, achieving this goal is
hard because we just know the identifier of the data index, and
we do not require the ingress edge server to store other more
information. Recall that the coordinate of the data index is
calculated based on the hash value of each index copy. Then,
the data index is forwarded to the switch whose coordinate
is closest to the coordinate of the data index in the virtual
space, and the indexing edge server directly connected to the
switch will store the data index. In this case, to select the
optimal index copy without probing all index copies, the key
enabler is to reflect the path length between two switches by
the distance between the corresponding points in the virtual
space, which has been achieved in Section III-A.1. As shown
in Algorithm 3, the ingress edge server can select the optimal
index copy. Furthermore, it will transfer the string of the
optimal index copy to switch u, which is directly connected
with the ingress edge server. After that, the switch can forward
the querying request of a data index to the nearest index copy
based on the coordinates of the switches and the index copy.
Therefore, under the COIN mechanism, the ingress edge server
can quickly select the optimal index copy that achieves the
shortest path length to retrieve the data index.

V. PERFORMANCE EVALUATION

In this section, we first implement and evaluate our COIN
mechanism on a small-size testbed. Furthermore, we evaluate
the effectiveness and efficiency of the COIN mechanism
through large-scale simulations.

A. Implementation and Prototype-Based Experiments

We have built a testbed, which consists of 6 P4 switches
and 12 edge servers as shown in Fig. 6. We imple-
ment the centralized indexing (C-index), the DHT indexing
(D-index) [11] and our COIN mechanisms on our testbed,
and further compare the performances of the three different
indexing mechanisms. We implement the COIN mechanism,
including all switch plane and control plane features described
in Section II-B, where the switch plane is written in P4 [33],
and the functions in the control plane are written in Java. The
P4 compiler generates Thrift APIs for the controller to insert

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 9

Fig. 7. The path lengths and the numbers of forwarding entries under different
indexing mechanisms in a small-scale testbed.

the forwarding entries into the switches. The P4 switch sup-
ports a programmable parser to allow new headers to be
defined where multiple match+action stages [34] are designed
in series to achieve the neighboring switch whose coordinate is
closest to the coordinate of the data index. The P4 switch cal-
culates the distance from a neighboring switch to the data
index in the virtual space in a match+action stage.

We first compare the path lengths and the number of
forwarding table entries under different indexing mechanisms.
The path lengths from all edge servers to the indexing edge
server are calculated, and then, the average path lengths under
different indexing mechanisms are obtained. In the following
figures, each error bar is constructed using a 95% confidence
interval of the mean. As shown in Fig. 7(a), the average
path length achieved by our COIN mechanism is close to
the average path length achieved by the C-index mechanism
and is obviously shorter than the average path length achieved
by the D-index mechanism. The C-index mechanism uses the
shortest path between an ingress edge server and the indexing
edge server to retrieve a data index. The D-index mecha-
nism retrieves a data index while employing multiple overlay
hops where one overlay hop is related to the shortest path
between two edge servers. However, our COIN mechanism
only employs one overlay hop to retrieve the data index.

Furthermore, we compare the number of forwarding table
entries for searching data indexes under different indexing
mechanisms where C-index and D-index mechanisms forward
the packets by matching the source and destination addresses.
Fig. 7(b) shows the average number of forwarding table entries
per switch under different indexing mechanisms. As shown
in Fig. 7(b), our COIN mechanism achieves fewer forwarding
table entries in switches than the other two indexing mecha-
nisms. It is because that under our COIN mechanism, the num-
ber of forwarding table entries in each switch is just related
to the number of its neighboring switches. However, under
C-index and D-index mechanisms, the number of forwarding
table entries increases as the increase of the number of flows
in the edge network.

Meanwhile, we evaluate the impact of the multiple copies
on the performance of the COIN mechanism. We have stored
10, 000 data items in the edge network where the data size
varies from 10KB to 10MB. Two data copies and two index
copies are maintained for each shared data. Then, we ran-
domly generate some data requests and test the latencies
of retrieving the data indexes and the data copies under
different indexing mechanisms. Fig. 8(a) shows that the COIN

Fig. 8. The latencies of retrieving the indexes and the data under different
indexing mechanisms in a small-scale testbed.

mechanism achieves the least average latency to retrieve the
index copy among the three indexing mechanisms since the
COIN mechanism can quickly select the optimal index copy
based on the coordinates of switches and index copies in the
virtual space. We can find that the gap between the C-index
mechanism and the COIN mechanism is small in Fig. 8(a).
It is mainly because that the scale of our testbed is small.
Furthermore, we test the impact of multiple data copies on the
latency of retrieving the data. As shown in Fig. 8(b), the COIN
mechanism incurs the least average latency of retrieving the
data among the three mechanisms without sampling all data
copies. Note that the average latencies of retrieving the data
for the C-index and the D-index mechanisms are very close
in Fig. 8(b) because they all retrieve the data using the shortest
path routing after obtaining the data index.

B. Setting of Large-Scale Simulations

In simulations, we use BRITE [36] with the Waxman model
to generate synthetic topologies at the switch level where
each switch connects to 10 edge servers. We vary the number
of switches from 20 to 100. In this case, the number of
edge servers varies from 200 to 1000 in edge networks. Note
that our COIN mechanism can be scaled to larger networks,
which have the same size as software-defined networks [19].
Meanwhile, it is worth noting that the advantage of the COIN
mechanism will be more obvious when the network size
increases. The compared methods are as follows.

1) The C-index mechanism: it means that a dedicated edge
server is selected as the global indexing server in the
edge network where each ingress edge server uses the
shortest paths to retrieve the data indexes.

2) The D-index mechanism: it uses the storage principle of
Chord [11], a well-known DHT solution, to distribute
the data indexes in the edge network.

3) The COIN mechanism: it stores the data index based on
the coordinates of the switches and the data indexes in
the virtual space, as shown in Section III.

We adopt two performance metrics to evaluate different
indexing mechanisms including the path length and the
number of forwarding table entries for retrieving data
indexes. Note that each entry in the forwarding table indicates
the coordinate of a neighboring switch under the COIN mech-
anism. Under C-index and D-index mechanisms, packets are
forwarded by matching the source and destination addresses.
In this case, the forwarding entry includes the next hop
for forwarding packets, and a new entry is added into the

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. The average path lengths for retrieving data indexes under different indexing mechanisms.

forwarding table for a new pair of source and destination.
To reduce the number of forwarding table entries, we use the
wildcard forwarding entries for C-index and D-index mecha-
nisms. In the following figures, each error bar is constructed
using a 95% confidence interval of the mean. That is, the lower
bar denotes the 2.5th percentile, and the upper bar presents the
97.5th percentile. Thus, the probability between the lower bar
and the upper bar is 95%. Furthermore, we evaluate the impact
of multiple copies on the path lengths of retrieving the data
items and the data indexes.

C. The Path Lengths for Retrieving Data Indexes

In this section, we evaluate the path lengths for retrieving
the data indexes under different indexing mechanisms. The
path lengths from all edge servers to the indexing edge server
are calculated, and then, the average path length is obtained.

Fig. 9(a) shows that the average path length of retrieving
the data indexes are almost the same for COIN and C-index
mechanisms. Note that the C-index mechanism uses the short-
est path from an ingress edge server to the dedicated indexing
server to retrieve the data index. Meanwhile, we can see that
COIN and C-index mechanisms achieve significantly shorter
path lengths than the D-index mechanism from Fig. 9(a). The
average path length under the D-index mechanism has an
obvious increase as the increase in the number of switches
in Fig. 9(a). However, the increase is slow for COIN and
C-index mechanisms when the number of switches changes.

In Fig. 9(a), the results are achieved when only one index
copy is maintained for each shared data. Furthermore, we eval-
uate the change of the average path length when there are three
index copies for each shared data. In this case, we test the path
length for each index copy, and the path length of the shortest
path is recorded for each indexing mechanism under each
network setting. The experiment results are shown in Fig. 9(b),
which shows almost the same trend as Fig. 9(a). That is,
the average path length for retrieving the data index under the
COIN mechanism is close to the average path length achieved
by the C-index mechanism and is obviously shorter than the
average path length under the D-index mechanism. It is worth
noting that the C-index mechanism is a centralized indexing
mechanism and suffers from the performance drawbacks in
the fault tolerance and the scalability.

Fig. 9(c) shows that more index copies result in shorter
path lengths for retrieving the data indexes under the three
indexing mechanisms. Meanwhile, we can see that the impact
of the index copies on the path length under the D-index
mechanism is more obvious than the other two mechanisms.

However, the D-index mechanism still needs a longer path to
retrieve the data index than COIN and C-index mechanisms.
As shown in Fig. 9(c), our COIN mechanism employs the
shortest path to retrieve the data index than D-index and
C-index mechanisms when three index copies are available
for each shared data. More precisely, our COIN mechanism
employs the average 68% and 59% shorter path lengths than
the D-index mechanism when there are only one index copy
and three index copies, respectively.

D. Forwarding Entries for Retrieving Indexes

In this section, we evaluate the number of forwarding table
entries for searching the data indexes under different indexing
mechanisms. For C-index and D-index mechanisms, we utilize
the wildcard forwarding entries to significantly reduce the
number of forwarding table entries.

Fig. 10(a) shows the change trend of the number of for-
warding table entries as the increase of the number of switches
under different indexing mechanisms. Each point in Fig. 10(a)
indicates the average number of forwarding table entries over
all switches under each network setting. We can see that,
for C-index and D-index mechanisms, the average number
of forwarding table entries increases as the increase in the
number of switches from Fig. 10(a). However, the average
number forwarding table entries of our COIN mechanism is
almost independent of the network size since it is only related
to the number of neighboring switches for each switch. Mean-
while, we can see that the upper error bars for the C-index
mechanism are significantly higher than our COIN mechanism
from Fig. 10(a). It is because that the C-index mechanism
employs the shortest path routing to forward data indexes.
In this case, some switches are frequently used in most of
shortest paths, and then, a large amount of forwarding table
entries are inserted into those switches.

The result in Fig. 10(a) is achieved when there is only
one index copy for each shared data. Furthermore, Fig. 10(b)
shows the average number of forwarding table entries for
different indexing mechanisms when three index copies are
stored for each shared data. In this scenario, we can see
that the average number of forwarding entries for our COIN
mechanism is the least among the three indexing mecha-
nisms, as shown in Fig. 10(b). For the D-index mechanism,
the average number of forwarding entries decreases when the
number of switches varies from 90 to 100. The reason is
that the network topologies are generated independently under
different network sizes.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 11

Fig. 10. The number of forwarding table entries under different indexing mechanisms.

Fig. 11. The impact of multiple copies on the average path lengths.

Fig. 10(c) shows the impact of the index copies on the
average number of forwarding entries under different index-
ing mechanisms, where 100 switches are deployed in the
edge network. We can see that, for the C-index mechanism,
the increase of the number of index copies causes the increase
in the number of forwarding table entries from Fig. 10(c).
It is because that multiple indexing servers are maintained to
support multiple index copies under the C-index mechanism.
However, more index copies have no impact on the number of
forwarding table entries for D-index and COIN mechanisms
since they are distributed indexing mechanisms. Furthermore,
our COIN mechanism uses 30% less forwarding table entries
compared to the well-known distributed D-index mechanism.

E. The Impact of Multiple Copies

In this section, we further evaluate the impact of multiple
copies on the path lengths of retrieving the data indexes and the
data items. First, we test the impact of multiple index copies.
Here, three index copies are maintained for each shared data.
C-index and D-index mechanisms randomly select one index
copy to retrieve the data index. The Co-random mechanism
also employs the coordinate-based indexing mechanism, but
randomly select an index copy to retrieve the data index.
In Fig. 11(a), the path lengths of retrieving the data indexes
under Co-random and C-index mechanisms are very close,
and they are obviously shorter than the path lengths under
the D-index mechanism. Furthermore, we can see that our
COIN mechanism employs the shortest path to retrieve the
data index than the other three indexing mechanisms under any
network size from Fig. 11(a). That is, the experiment results
show that retrieving the data index from the nearest index copy
in the virtual space incurs obviously shorter path length than
retrieving the data index from a randomly selected index copy
without sampling all index copies.

Furthermore, we evaluate the impact of multiple data copies
on the path length of retrieving a data item where three data
copies are stored for the same data in the edge network.
Here, we compared three methods of retrieving the data. The
Co-random mechanism utilizes the coordinate-based indexing
mechanism but randomly selects a data copy. The results of
the Co-optimal mechanism are achieved by testing the path
lengths to all data copies, and only the shortest path length
is recorded for each data item. As shown in Fig. 11(b),
the average path length of retrieving a data under the COIN
mechanism is very close to the average path length under
the Co-optimal mechanism and is significantly shorter than
the result of the Co-random mechanism. In those experiments,
we find that in rare cases, the COIN mechanism fails to achieve
the optimal result, where the distance to the storing edge
server employed by the COIN mechanism is very close to the
distance to the storing edge server used by the Co-optimal
mechanism. Therefore, it also means that the path length
achieved by the COIN mechanism is just a little longer than
the optimal path in those rare cases. It is worth noting that
the COIN mechanism achieves the optimal path length in
most cases without sampling all data copies. It is because
that the path lengths between switches are embedded into the
distance between the corresponding points in the virtual space
in Section III-A.1.

F. The Scalability of the COIN Mechanism

Note that the control plane needs to maintain a DT graph
in the virtual space. When the scale of the network is large,
the control plane needs a little longer computation time to
construct the DT graph. After that, each switch conducts
greedy forwardings without the interactions with the control
plane, and the greedy forwardings can effectively reduce the
load of the control plane. Furthermore, much research has been
investigated to improve the performance and scalability of the
control plane [20], [25], [37], [38]. To evaluate the scalability
of the COIN mechanism, we further carry out experiments
on large-scale networks where the number of switches varies
from 100 to 1000.

Fig. 12(a) shows the impact of the network size on the
average path length under different indexing mechanisms.
The changing trend in Fig. 12(a) is similar to Fig. 9(a).
In Fig. 12(a), we can see that the average path length achieved
by our COIN mechanism is almost the same with that of the
C-index mechansim and is obviously shorter than the average
path length achieved by the D-index mechanism. Note that
each ingress edge server uses the shortest path routing to

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 12. The performance comparison of different indexing mechanisms in
large-scale networks.

forward requests to the indexing edge server under the C-index
mechanism. However, the C-index mechanism is a centralized
indexing mechanism, which suffers from poor scalability and
performance bottleneck. Furthermore, Fig. 12(b) presents the
impact of the network size on the average number of for-
warding table entries under different indexing mechanisms.
Fig. 12(b) shows a similar trend to Fig. 10(a). We can see
that the average number of forwarding table entries under our
COIN mechanism is significantly less than that of the D-index
mechanism from Fig. 12(b). Therefore, our COIN mechanism
has all the advantages of the distributed indexing mechanism
while employing significantly shorter path lengths and less for-
warding table entries than the well-known distributed indexing
mechanism.

VI. RELATED WORK

In this paper, we do not address data caching algorithms or
cache consistency maintenance but focuses on the benefits of
data cache sharing in edge computing. The edge computing
aims to push the function of Clouds towards the network edges
to dramatically reduce the network latency and traffic vol-
ume [1]–[3], [5]. At current, the edge computing has attracted
much research where the major research problems include
the deployment of edge servers, the network architecture,
the mobility management, the caching mechanism, and so on.

Content cache in edge computing. In edge computing,
edge servers perform computing offloading, data storage,
caching and processing, as well as distribute request and
delivery service [2]. The stored data in edge servers mainly
comes from two folds. One is to cache the data from the Cloud
to provide low-latency services for edge users. Another is to
temporarily store the data produced by the edge users. All the
data can be shared among multiple edge servers to provide
services for more edge users. Motivated by this fact, wire-
less content caching was proposed in [15] to avoid frequent
replication for the same contents by caching them at BSs.
Predicting users’ behavior, and proactively caching the users’
content in the edge of the network also shows that further
gains can be obtained in terms of backhaul savings and user
satisfaction [7]. Tran et al. investigated collaborative multi-
bitrate video caching and processing [39], where multiple
bitrate versions of a video can be delivered so as to adapt to the
heterogeneity of user capabilities and the varying of network
condition. At current, much research has been conducted to
study how to cache the data into edge servers. However,
there is still a lack of research about the data sharing among

edge servers. Therefore, in this paper, we investigate how to
efficiently share the cached data among edge servers.

Data sharing in other computing environments. Although
there are some studies about the data sharing in P2P net-
works and Web Proxies, we present why those studies are
not enough to solve the corresponding problems in edge
computing. The sharing of caches among Web proxies is
an important technique to reduce Web traffic and alleviate
network bottlenecks. Fan et al. proposed a new protocol called
“summary cache” [9], where each proxy keeps a summary of
the cache directory, and checks those summaries for poten-
tial hits before sending any queries. Iyer et al. presented a
decentralized, peer-to-peer web cache called Squirrel [40].
Bo et al. proposed reference architecture for P2P systems [17]
that focuses on the data indexing technology required to
support resource locating. A P2P index can be local [41],
centralized [10] or distributed [11]. With distributed index-
based search scheme, pointers towards the target reside at
several nodes, and distributed indexes are used in most P2P
designs nowadays. We have compared those indexing schemes
in Section II-B. For prior distributed indexing mechanisms,
the main drawback is that they employ too long paths to
retrieve data indexes, and further, that incur long latencies and
more bandwidth consumption.

Peer data sharing among edge devices. At current, there
are also some research about the peer data sharing in edge
devices (e.g., smartphones). Song et al. proposed Peer Data
Sharing (PDS) that enables mobile devices to quickly discover
what data exist in nearby peers and retrieve desired data from
possibly multiple edge devices [42]. Furthermore, Huang et al.
considered caching fairness for peer data sharing among edge
devices [43]. They proposed two caching algorithms to achieve
the fair workload among selected caching nodes for data
sharing in pervasive edge environments. However, there is still
a lack of research about the data sharing among edge servers,
which can provide more opportunities for peer data sharing
among edge devices.

VII. CONCLUSION

In edge computing, edge servers need to cache the data to
provide services for edge users and many emerging applica-
tions. The data sharing among edge servers can effectively
shorten the latency of retrieving the data and further reduce
the network bandwidth consumption. A key challenge to
achieve this goal is to provide an efficient data indexing
mechanism no matter how the data is cached in the edge
computing environment. The COIN solves this challenging
problem, and attractive features of COIN include its routing
simplicity, provable correctness, shorter path length, and less
forwarding table entries. Our experimental results confirm that
the effectiveness and efficiency of the COIN mechanism. We
believe that COIN will be a valuable component of edge
computing.

APPENDIX

Appendix 1: The proof of Theorem 1
Based on the DT graph in the virtual space, the COIN

mechanism always succeeds to forward a data index d to a
unique switch, which is closest to the data index in the virtual
space.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: COIN: EFFICIENT INDEXING MECHANISM FOR UNSTRUCTURED DATA SHARING SYSTEMS 13

Proof: First, the coordinate of data index d is achieved
by hashing the data identifier, p = Hash(d). We prove this
theorem by showing that every vertex u in the DT has a
neighbor that is strictly closer to p than u is. Thus, at each
routing step, the data index gets closer to p. After at most n
steps, the data index reaches switch w∗, which is closest to p.

We use P to denote the set of switches’ coordinates, and
DT (P) denotes the DT graph consisting of those points.
Consider the Voronoi diagram V D(P) is the straight line face
dual of the Delaunay triangulation DT (P) [31]. Let Ω be a
metric space with distance function φ. Assume that there are
n switches. The coordinate of a switch (wk)1≤k≤n be a point
in the space Ω. If φ(r, W) = inf{φ(r, w)|w∈W} denotes the
distance between the point r and the subset W , then we define
a region Rk associated with the site wk as follows.

Rk = {r∈Ω|φ(r, wk)≤φ(r, wj), j = 1, . . . , n, j �=k} (5)

That is, the region Rk is the set of all points in Ω whose
distance to wk is not greater than their distance to the other
sites wj , where j is any index different from k. Accordingly,
those regions are called Voronoi cells, and the diagram is a
general Voronoi diagram [44].

Consider the Voronoi diagram V D(P) of the vertices of
P and let e be the first edge of V D(P) intersected by the
directed line segment (u, p). Note that e is on the boundary
of two Voronoi cells, one for u and one for some other
vertex v, and the supporting line of e partitions the plane
into two open half planes hu = {r : φ(r, u)<φ(r, v)} and
hv = {r : φ(r, v)<φ(r, u)}. The edge (u, v) ∈ DT (P)
because the Delaunay triangulation DT (P) is straight line
face dual of the Voronoi diagram V D(P). Therefore, switch u
will forward the data index to switch v when p ∈ hv. At last,
the data index d will be forwarded to switch w∗ closest to p.

Note that two special cases could occur. In the first scenario,
point p could be on an edge e of V D(P). In this case,
we suppose the edge (u, v) ∈ DT (P) is intersected with e.
Therefore, u and v have the same distance to p and are closer
to p than all other points in DT (P). Assume that the data
index is first forwarded to switch u. Switch u finds that its
neighbor v has the same distance to p, and then compares
their coordinates. We use (x1, y1) and (x2, y2) to denote the
coordinates of switches u and v, respectively. If (x1 < x2),
then w∗ = u. If (x1 > x2), then w∗ = v, and switch u
forwards the data index d to switch v. If (x1 == x2) and
y1 < y2, then w∗ = u. If (x1 == x2) and y1 > y2,
then w∗ = v, and switch u forwards the data index d to
switch v. In the second scenario, point p is inside a triangular
in DT (P) and is also an endpoint of V D(P). In this case,
the three points of the triangular have the same distance to p.
Meanwhile, the three points are mutual neighbors in DT (P).
Therefore, using the same method, we rank the x coordinate,
then y coordinate to determine the switch w∗.

Thus, Theorem 1 is proved.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing a key technology towards 5G,” Eur. Telecommun. Standards
Inst., Sophia Antipolis CEDEX, France, Tech. Rep. 979-10-92620-08-5,
2015.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[5] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proc. HotWeb, Nov. 2015, pp. 73–78.

[6] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and
E. Riviere, “On using micro-clouds to deliver the fog,” IEEE Internet
Comput., vol. 21, no. 2, pp. 8–15, Mar. 2017.

[7] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[8] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, and H. Chen, “Efficient
indexing mechanism for unstructured data sharing systems in edge
computing,” in Proc. IEEE INFOCOM, Apr. 2019, pp. 820–828.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[10] B. Yang and H. Garcia-Molina, “Comparing hybrid peer-to-peer sys-
tems,” in Proc. 27th Intl. Conf. Very Large Data Bases, 2001, pp. 1–4.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. ACM SIGCOMM, 2001, pp. 149–160.

[12] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[13] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[14] A. S. Gomes et al., “Edge caching with mobility prediction in virtu-
alized LTE mobile networks,” Future Gener. Comput. Syst., vol. 70,
pp. 148–162, May 2017.

[15] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[16] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[17] J. Bo and J. Zhao, “Index-based search scheme in peer-to-peer net-
works,” in Computer Science for Environmental Engineering and EcoIn-
formatics. Kunming, China: Springer, 2011, pp. 102–106.

[18] C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierarchical DHT-
based name resolution for information-centric networks,” Comput. Com-
mun., vol. 36, no. 7, pp. 736–749, Apr. 2013.

[19] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[20] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Comput. Commun., vol. 67, pp. 1–10,
Aug. 2015.

[21] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3th ACM SIGCOMM HotSDN, Aug. 2014, pp. 1–6.

[22] J. Xie, D. Guo, C. Qian, L. Liu, B. Ren, and H. Chen, “Validation
of distributed SDN control plane under uncertain failures,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1234–1247, Jun. 2019.

[23] S. S. Lam and C. Qian, “Geographic routing in d-dimensional spaces
with guaranteed delivery and low stretch,” IEEE/ACM Trans. Netw.,
vol. 21, no. 2, pp. 663–677, 2013.

[24] P. Bose and P. Morin, “Online routing in triangulations,” SIAM
J. Comput., vol. 33, no. 4, pp. 937–951, Jan. 2004.

[25] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[26] J. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail latency
of routing response in software defined networks,” IEEE J. Sel. Areas
Commun., vol. 36, no. 3, pp. 384–396, Mar. 2018.

[27] I. Borg and P. J. Groenen, Modern Multidimensional Scaling: Theory
Application. New York, NY, USA: Springer, 2005.

[28] F. Wickelmaier, “An introduction to MDS,” Sound Qual. Res. Unit,
Aalborg Univ., Aalborg, Denmark, Tech. Rep. R00-6003, 2003.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[29] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-order
differential collisions for reduced SHA-256,” in Proc. Int. Conf. Theory
Appl. Cryptol. Inf. Secur., 2011, pp. 270–287.

[30] C. Qian and S. S. Lam, “Greedy routing by network distance
embedding,” IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2100–2113,
Aug. 2016.

[31] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental
construction of Delaunay and Voronoi diagrams,” Algorithmica, vol. 7,
nos. 1–6, pp. 381–413, Jun. 1992.

[32] J. A. De Loera, J. Rambau, and F. Santos, Triangulations Structures for
Algorithms and Applications. Berlin, Germany: Springer, 2010.

[33] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[34] (Feb. 2019). P416 Language Specification. [Online]. Available:
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[35] (Feb. 2019). Java Class Hashmap<K, V>. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

[36] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” in Proc. 9th Int. Symp., Washington,
DC, USA, Aug. 2001, pp. 346–353.

[37] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:
Simplifying distributed SDN control planes,” in Proc. NSDI, 2017,
pp. 329–345.

[38] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” Hot-ICE,
vol. 12, pp. 1–6, Apr. 2012.

[39] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative
multi-bitrate video caching and processing in mobile-edge computing
networks,” in Proc. 13th Annu. Conf. Wireless Demand Netw. Syst.
Services (WONS), Feb. 2017, pp. 165–172.

[40] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized peer-
to-peer web cache,” in Proc. 21st Annu. Symp. Princ. Distrib. Comput.
(PODC), 2002, pp. 213–222.

[41] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proc. 25th Anniversary Int.
Conf. Supercomput. Anniversary, 2014, pp. 84–95.

[42] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content centric
peer data sharing in pervasive edge computing environments,” in Proc.
37th IEEE ICDCS, Jun. 2017, pp. 287–297.

[43] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in
Proc. 37th IEEE ICDCS, Jun. 2017, pp. 605–614.

[44] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessellations:
Applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676,
Apr. 1999.

Junjie Xie received the B.E. degree in com-
puter science and technology from Beijing Institute
of Technology, Beijing, China, in 2013, and the
M.E. and Ph.D. degrees in management science
and engineering from the National University of
Defense Technology, Changsha, China, in 2015 and
2020, respectively. He is currently an Engineer with
the Institute of Systems Engineering, AMS, PLA,
Beijing. His research interests include distributed
systems, software-defined networking, and mobile
edge computing.

Chen Qian (Senior Member, IEEE) received the
B.Sc. degree in computer science from Nanjing
University in 2006, the M.Phil. degree in computer
science from The Hong Kong University of Science
and Technology in 2008, and the Ph.D. degree in
computer science from The University of Texas
at Austin in 2013. He is currently an Assistant
Professor with the Department of Computer Science
and Engineering, University of California at Santa
Cruz. He has published more than 60 research papers
in highly competitive conferences and journals. His

research interests include computer networking, network security, and the
Internet of Things. He is a member of ACM.

Deke Guo (Senior Member, IEEE) received the B.S.
degree in industry engineering from Beijing Univer-
sity of Aeronautics and Astronautics, Beijing, China,
in 2001, and the Ph.D. degree in management sci-
ence and engineering from the National University
of Defense Technology, Changsha, China, in 2008.
He is currently a Professor with the College of
Information System and Management, National Uni-
versity of Defense Technology, and a Professor with
the School of Computer Science and Technology,
Tianjin University. His research interests include

distributed systems, software-defined networking, data center networking,
wireless and mobile systems, and interconnection networks. He is a member
of ACM.

Minmei Wang (Graduate Student Member, IEEE)
received the B.E. degree from Nanjing University
of Posts and Telecommunications in 2014 and the
M.Sc. degree from Nanjing University in 2017. She
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of California at Santa Cruz. Her research
interests include the Internet of Things and network
security.

Ge Wang received the Ph.D. degree from Xi’an
Jiaotong University in 2019. She was a Visiting
Student with the University of California at Santa
Cruz from 2017 to 2019. She is currently an Assis-
tant Professor with Xi’an Jiaotong University. Her
research interests include wireless sensor networks,
RFID, and mobile computing.

Honghui Chen received the M.S. degree in oper-
ational research and the Ph.D. degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha, China,
in 1994 and 2007, respectively. He is currently a
Professor of information system and management,
National University of Defense Technology. His
research interests include information systems, cloud
computing, and information retrieval.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 15,2021 at 21:30:11 UTC from IEEE Xplore. Restrictions apply.

