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Abstract—Public-key certificate validation is an important
building block for various security protocols for IoT devices,
such as secure channel establishment, handshaking, and ver-
ifying sensing data authenticity from cloud storage. However,
certification validation incurs non-trivial overhead on resource-
constrained IoT devices, because it either brings long latency
or large cache space. This work proposes to utilize the power
of distributed caching and explores the feasibility of using the
cache spaces on all IoT devices as a large pool to store validated
certificates. We design a Collaborative Certificate Validation
(CCV) protocol including a memory-efficient and fast locator for
certificate holders, a trust model to evaluate the trustworthiness
of devices, and a protocol suite for dynamic update and certificate
revocation. Evaluation results show that CCV only uses less than
25% validation time and reduces >90% decryption operations
on each device, compared to a recent method. Malicious devices
that conduct dishonest validations can be detected by the network
using the proposed trust model.

Index Terms—IoT security, Certificate validation, Collabora-
tion

I. INTRODUCTION

In recent years, Internet of Things (IoT) has attracted
significant attention due to the emergence applications of
industrial automation, smart devices, vehicular communica-
tion, smart cities, and smart homes [3] [43] [29]. A widely
accepted definition of IoT for smart environment is that IoT
is an interconnection of sensing and actuating devices that
is capable of sharing information across platforms through a
unified framework such as cloud [13]. Thus, a great amount
of data, including both public and private information, will be
generated, processed and transmitted by IoT devices.

Data authenticity for IoT devices is a critical issue. Many
current IoT devices rely on a central platform to verify
data authenticity [36] [34]. However, emerging and future
IoT devices, such as personal health monitors, unmanned
aerial vehicles, robots, and self-driving cars, become multi-
functional, self-organized, and interactive. Hence due to scal-
ability and autonomy problems, there may not be a central
platform to interconnect all these devices. IoT devices may
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directly communicate with each other to share data. Public key
cryptography (PKC) enables fundamental security protocols
for IoT data communication, based on a well-functioning
public key infrastructure (PKI). In fact, PKC can be widely
used in IoT environment. We list the following (incomplete)
important use cases of PKC for IoT. 1) The authentication
process in protocols for establishing a secure channel between
two end devices or one device and a server. For example,
in an IoT-based healthcare system, wearable sensors that
collect human-related data need to securely communicate with
other sensors, caregivers and doctors [26]. Existing approaches
modify traditional end-to-end IP security protocols to adapt to
IoT environments, such as DTLS [33] and HIP DEX [27],
which rely on PKC for handshaking. 2) When an IoT device
retrieves sensing data that were collected by other sensors and
stored in the cloud, it needs to verify the data integrity and
authenticity to guarantee that data have not been tampered
with or partially dropped [22]. Digital signatures of sensing
data are applied for this situation. In order to verify the
correctness of a data signed by the private key of the data
generator, a device first needs to validate the public key via its
certificate. 3) Recently studied Blockchain-based IoT systems
[8] heavily rely on PKC. For all situations, certificate
validation is an essential step. Although certificate validation
can be completed relatively easily on an ordinary computer, it
incurs non-trivial overhead on resource-constraint IoT devices.
For example, using an optimized method that requires only
one signature verification, certificate validation still costs 1.9
seconds and certificate-based public key operations demand
95% of the overall processing time of handshaking on the
WisMote platform [23], as reported in [14].

This work focuses on a specific yet important problem:
how to perform fast certificate validation in a large IoT
network. We do not intend to improve handshaking protocols,
PKI, or PKC schemes in IoT. Instead we study the certificate
validation method that is compatible to most existing PKIs and
PKC algorithms. There has been existing work on reducing
certificate validation cost in classic network environments. One
method is to delegate certificate validation to a third party
[14] [26] [25], which causes high overhead to the third party,
making it be the computation bottleneck and a single point
of failure. Some recent work aims at reducing the cost of
checking certificate revocation status [24] [41], but provides
no solution to reducing the signature verification in certificate
validation. Prefetching and prevalidation are also used for
efficient certificate validation [15] [37], but they bring heavy
storage cost. However, IoT devices are often deployed with
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limited memory.
Fast certificate validation on IoT devices seems to be a

dilemma: the most effective approach is to cache as many
validated certificates as possible, but it is not allowed on IoT
devices with limited memory. We call the process of validating
a public-key certificate via verification of CA signature as
individual validation. Individual validation of every certificate
is time-consuming. Hence none of the above methods is
desired for IoT.

In this work we propose to utilize the power of distributed
caching and explore the feasibility of using the cache spaces
on all IoT devices as a large pool to store validated certificates,
which can be accessed by any internal device. We design a
Collaborative Certificate Validation protocol (CCV), which
adopts the cooperation strategy in a large IoT network and
utilizes the overall computation power and storage resources.
When one device d needs to validate a certificate that has been
validated and cached by another device h in the network, d can
request a collaborative certificate validation from h to confirm
that the requested certificate matches the cached one. The
design of CCV includes three main challenges. First, how
each device can efficiently locate the holder of a certificate
without storing a long index that maps every certificate to its
holder. Second, how to avoid false validation results shared by
the IoT devices controlled by the attacker (called malicious
devices). Third, how to dynamically maintain a consistent
collaborative validation when new certificates are validated
and cached certificates are removed or revoked.

Our contributions of this work include the following. 1)
We design a memory-efficient and fast locator for certificate
holders, called OLoc, based on a recent data structure Othello
Hashing [42]. 2) We introduce a trust model for CCV to
evaluate the trustworthiness of each device to avoid dishonest
collaborative validation from malicious devices. 3) We design
a complete protocol suite for efficient OLoc update, cache
replacement, and revocation status checking mechanisms in
a dynamic network. Evaluation results show that CCV only
uses less than 25% time compared to the certificate validation
in a recent method [14]. The majority time cost of CCV is
on network latency rather than local public key decryptions
(reducing > 90% decryptions), hence it significantly saves
computation resource.

The paper is structured as follows. We give the problem
statement, network model and security model in Section II.
Section III presents the design consideration of the certificate
locator. We present the detailed protocol design in Section IV.
We show the evaluation results and security analysis in Sec-
tion V. Section VI presents the related work. We discuss the
false validation problems in Section VII and Section VIII
concludes this work.

II. PROBLEM STATEMENT AND MODELS

A. Problem Specification and Network Model

The IoT system discussed in the paper, as depicted in Fig. 1.
We consider a large IoT system including a large number (100
or more) of devices. The use cases of such system can be
an industrial IoT control network [19], a community network
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Fig. 1. Network Model

with home IoT devices, or an organization/building/campus
network with various IoT devices (cameras, sensors, smart
office products, etc.). The system consists of the following
units.

(1) IoT devices. An IoT device (or “device” in short) is
a sensor or actuator with constrained computing, memory,
and power resources. Each device can communicate to the
Internet through the routers in the IoT system. A device
sends and receives packets to/from a router using its wireless
chip via either direct connection to a router (“infrastructure
mode”, such as those in a home WiFi network) or multi-
hop forwarding (“ad-hoc mode”, such as those in a low-power
sensor network). Devices can communicate with each other.

(2) Routers. Routers are the forwarding units to support
communication among IoT devices, or between a device and
the Internet.

(3) Tracker. A tracker is a function running on a remote or
edge server to help managing the IoT network. All IoT devices
can communicate with the tracker. The tracker does not
actually perform validation or caching for devices. A tracker
in CCV is not a single point of failure. Our experiments will
show that a tracker requires minimal computation, storage,
and communication cost. Hence it can be easily replicated.
In CCV, we adopt two trackers: the primary tracker and the
secondary tracker. The primary tracker periodically sends the
latest stored data required in CCV to the secondary tracker for
backup. When the primary tracker stops functioning, CCV will
use the secondary tracker. Even if the two trackers both stop
working for a duration of time, IoT devices can still perform
certificate validation – though not optimal.

This work focuses on the public key certificate validation
problem of an IoT system. Each certificate is uniquely iden-
tified by its public key. We assume secure communication
channels have already been established among the IoT devices
and the tracker in the same local network using standard IoT
security solutions such as that in WirelessHART [19]. Hence
a device does not need to validate public keys of other devices
and the tracker in the same network. A device needs to validate
a public key certificate of an external node from the Internet
in the following situations:

(1) Authenticate an external node during the handshaking
to establish a secure session, such as that in DTLS [33] [14].

(2) Verify the authenticity of the data retrieved from a cloud,
which carry the digital signatures of external nodes [22].

The collaborative certificate validation scheme investigated
in the paper can be modeled as follows. When a device
receives a public key certificate that has already been verified
and cached by another device in the network (called the
holder), the device needs to locate the cached certificate
and ask the holder to confirm it. Otherwise it needs to run
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individual validation. Each device caches a (limited) number
of certificates validated by itself. When a device receives
a request from another device in the network to validate a
certificate, it will response based on the result from its cache.

B. Security Model
We assume the internal communication among IoT devices

or between a device and the tracker is secure. The secure
communication channels have been established using standard
solutions such as the security protocol of WirelessHART
[19]. Group keys and session keys have been successfully
distributed. We do not consider attacks on the communications
between two IoT devices or a device and the tracker. All
devices, except those controlled by an attacker, are willing
to collaborate. The goal of a device is to maximize the
functioning of the entire network rather than maximizing the
functioning or lifetime of itself. We assume the tracker is
trusted.

This work focuses on the research problem of efficient
validation of public key certificates, assuming there exists a
well-functioning PKI. This research is not about building a
better PKI. Hence we do not consider attacks during the PKI
validation process.

An attacker can control a number of devices in the network
to conduct malicious behaviors, which are referred as mali-
cious devices. Malicious devices are “malicious-but-cautious”
and may collude. The tracker stores a trust value for every
device to indicate the likelihood that the device is legitimate.
Malicious devices may conduct the following attacks.

(1) False validation attack: A malicious device provides
false certificate validation results to other devices.

(2) Self-promoting attack: A malicious device promotes
its trust value by claiming that it helped other devices validate
certificates. However, it did not.

(3) Defamation attack: A malicious device claims that a
legitimate device provides wrong certificate validation results.

(4) Traitor attack: When a diplomatic attacker senses their
reputation is dropping because of providing malicious devices,
it can provide good services for a period of time to gain a high
reputation. Then it provides malicious services after it gains
high reputation.

(5) Whitewashing attack: Attackers can discard their cur-
rent identities and re-enter the systems when they have very
low trust levels and cannot be selected as collaborators.

(6) Collusion attack: Two or more malicious devices
improve their trust values by claiming that they helped each
other, However, they provide false validation results when
helping other devices to validate certificates.

(7) Sybil attack: A malicious party creates many fake iden-
tities to enter the system. The malicious party can destroy the
CCV protocol because fake identities cannot cache certificates.
Or the malicious party can conduct further attacks such as the
false validation attack based on fake identities.

In addition, a device never individually validates a certificate
that is not required by its own need, in order to avoid DoS
or resource exhaustion attacks. It only caches a certificate
validated by itself in prior communications and provides
validation confirmation of this certificate to another device.
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Fig. 2. Example of Othello Hashing

III. DESIGN CONSIDERATION OF CERTIFICATE LOCATOR

One major challenge of collaborative certificate validation is
to allow each device efficiently locate another device that has
validated and cached the certificate of the public key to use.
As the tracker knows the cached certificates of each device,
the problem is how to design a structure to store all certificate-
to-device information for each device. A simple solution is to
let each device maintain a complete index of all certificate-to-
device mappings. This method is not scalable because every
mapping requires more than 1000 bits of memory, assuming a
public key is 1024-bit long. A more advanced method is that
each device maintains m− 1 counting Bloom filters [10] (m
is the number of devices in the network). Each Bloom filter
represents the set of certificates of a device. The drawback of
this method is that locating the holder of a certificate requires
up to m − 1 Bloom filter lookup operations, which is time-
consuming especially on IoT devices. Hence they are both
impractical for IoT.

In this work we utilize and improve a recent innovation
called Othello Hashing [42] to design a memory-efficient and
fast locator for certificate holders. In addition, existing design
of Othello Hashing does not fully satisfy the requirement of
the locator hence we propose an improvement design called
Othello-based Locator (OLoc). Every device stores an OLoc.

Othello Hashing is used to represent a set of key-value pairs.
Given a set of keys K and each key k is mapped to a value
v ∈ V . Let n = |K|. An Othello Hashing structure is a seven-
tuple < ma,mb, ha, hb, a,b, G > defined as follows.
• Integers ma and mb is the size of Othello. ma ≈ 1.33n,
mb ≈ n.

• A pair of uniform random hash functions < ha, hb >
maps keys to integer values 0, 1, ...,ma − 1 and
0, 1, ...,mb − 1 respectively.

• a and b are two arrays including ma and mb elements
respectively.

• G is a bipartite graph which is used to determine the
values in a and b.

Fig. 2 shows an example of Othello Hashing of 5 keys k0
to k4. Each key has a corresponding 2-bit value. The bipartite
graph G consists of two groups of vertices us and vs. We
use a pair of uniform hash functions ha and hb. For each key
k, we will place an edge in G based on ha(k) and hb(k).
For example, ha(k0) = 7 and hb(k0) = 6. Then an edge is
placed to connect u7 and v6. The constructed bipartite graph
G needs to be acyclic. If there is a cycle, Othello needs to
choose another pair of uniform hash functions to re-build G.
The possibility to re-build G is small (Θ(1/n)) and it has
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proved that the cost to build Othello for n keys is O(n) [42].
Once such bipartite graph G is built, the elements of a and b
can be trivially assigned proper values such that a(ha(k)) ⊕
b(hb(k)) is the value of k.

After the arrays a and b being built, finding the value of
a given key k is extremely fast. Othello can simply retrieve
a(ha(k)) and b(hb(k)) and compute their XOR, requiring only
two memory access operations.

Complexity. The space cost of the two arrays in Othello is
small, around 2.33nl bits, where l is the length of each value.
Each lookup only requires two memory access and one XOR
operations –very small constant. It has also proved that the
expected time to add, delete and update a key-value pair is
O(1) [42].

Opportunities and challenges of using Othello. We find
that Othello Hashing is a good fit for the application of
memory-efficient certificate locator. Let each key be a public
key and the corresponding value be the holder of the certifi-
cate. We realize that, to perform locator lookups, only the two
hash functions < ha, hb > and arrays a and b need to be stored
in a device. The construction information, such as the key-
value pairs and the bipartite graph G are shared by the entire
network and not needed for lookups. Hence these information
can be stored at the tracker. Note the Othello construction and
update operations are relatively more complex than lookups.
Hence the IoT devices can avoid these operations and only
be responsible for efficient lookups. The tracker has plenty of
resources for construction and is responsible for updating and
sending the updated Othello arrays to the devices.

However one limitation of Othello Hashing is that, if we
search a key k′ that is not in K, Othello will return an
arbitrary value. It is because a(ha(k′)) and b(hb(k

′)) will
be two arbitrary elements. Hence if a certificate C is not
cached by any device in the network, the locator will point to
an arbitrary device. Falsely locating a holder will waste both
communication bandwidth and latency. In the next section we
will present an improved design of an Othello-based Locator
(OLoc) to reduce the rate of false holder locating.

IV. PROTOCOL DESIGN

A. Protocol Overview

Fig. 3 illustrates the overview of the proposed protocol CCV.
The whole system contains many IoT devices and a working
tracker. The CCV protocol runs on both the IoT devices and
the tracker.

Protocol on an IoT device d. When a device d needs to
validate a certificate C, CCV works as follows.

Part 1. d searches the Othello-based Locator (OLoc) to look
for a holder of C.

Part 2. If the OLoc indicates that there is a holder h of C,
devices d and h conduct collaborative validation based on the
cached certificate on h.

Part 3. If the OLoc indicates that there is no holder of C,
d runs individual validation.

Part 5. If a holder h confirms the validation of C, d will
forward this event to the tracker with a probability to allow
the tracker to monitor the trustworthiness of h.

OLoc
1

2

3

Collaborative
Validation

Individual
Validation

OLoc Update

Trust Update

4

5

6 Revocation Check

IoT Local Network
Tracker

LookupCertificate

Fig. 3. Protocol overview of CCV

Protocol on the tracker. The tracker is responsible for
updating the OLoc of different devices, monitoring the trust
values, and removing revoked certificates. The protocol on the
tracker operates as follows:

Part 4. Since the certificates cached in the network change
gradually, the tracker needs to update the OLoc for each device
to keep track of the update-to-date holder information. It then
distributes the updated OLoc to each device.

Part 5. When the tracker receives a forwarded validation
confirmation showing that h just helped d, it will verify the
correctness of this confirmation and update h’s trust value
accordingly.

Part 6. When the tracker receives new revocation lists from
CAs, it notifies the holders to remove these certificates from
their caches.

B. Bootstrap phase and devices management

Each IoT device or the tracker is associate with a digital
certificate that is issued by a certificate authority (CA). Two
steps are required in the bootstrap phase. 1) Registration. Each
device is registered on the tracker using its certificate. The
tracker then audits the identity of the device to filter fake
identities. One way is to put physical device information in
its certificate [39]. Or CA charges money for the certificate to
prevent attackers from getting enough identities for the Sybil
attack [5]. Legitimate devices will be added into the device
list. 2) Keys generation. Communication channels are built and
session keys are established between each two IoT devices and
between the tracker and a device. All two entities can create a
session key to build a secure channel through the certificate-
based key agreement protocol or other efficient key-generation
protocols, such as [30].

The system is dynamic with IoT devices join and leave at
any time. If a device joins the system, the device follows the
two steps in the bootstrap phase. If a device leaves the system,
the tracker will delete it by deleting the device in the device
list and not choosing it as collaborators in the OLoc. Then
the tracker sends messages to inform all the other devices to
delete the session key with this device.

C. Definition of Messages

There are many types of messages exchanged among de-
vices and the tracker in CCV. The CCV protocol is driven
by messages and events. We define the following types of
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messages before we describe details of CCV. Each message is
defined by a tuple where the first element is the message type.
All messages are exchanged above the secure communication
channels inside the network.
• < REQUEST VALI, C, u, v >: Device u sends this mes-

sage to request device v to validate the certificate C.
• < REPLY VALI, C, u, v, r >: Device u sends this mes-

sage to reply device v the certificate validation result r.
• < REPLY NO CERT, C, u, v >: Device u sends this

message to reply device v that it does not cache the
certificate C.

• < UPDATE TRUST, u, t, E >: Device u sends this
message to tell the tracker t to update the trust value
according to the collaborative validation events E. E
includes the information of the prior REPLY VALI mes-
sages.

• < FALSE VALI RESULTS, u, t, F >: The tracker t sends
the message to tell the device u that the prior validation
confirmation F is false.

• < NEW CACHE, C, u, t >: Device u sends this message
to tell the tracker that it caches the certificate C.

• < DELETE, C, u, t >: Device u sends this message to
tell the tracker that it no longer caches the certificate C.

• < UPDATE OLOC, O, u, t >: The tracker sends this
message to device u to request u to update its OLoc to
O.

• < REVO CERT, C, u, t >: The tracker sends this mes-
sage to device u to remove revoked certificate C.

• < CHECK REVO, C, u, t >: Device u sends this mes-
sage to the tracker to check whether the certificate C is
revoked or not.

• < REPLY REVO, C, u, t, r >: The tracker replies device
d the result r of the revocation status of certificate C.

D. Othello-based Locator and Update

This subsection describes Parts 1 and 4 presented in
Sec. IV-A and Fig. 3.

Upon receiving a validation requirement of a certificate C
of a public key k+ from the upper layer, a device d first checks
its local cache to see whether it has cached C. If C is cached
and the two versions are identical, then d confirms the validity
of C. Otherwise, d needs to determine whether there is another
device being the holder of C and which device it is.

Every device stores an Othello-based Locator (OLoc). The
lookup key of OLoc is a public key (identifier of a certifi-
cate) and the lookup result should indicate the holder of the
certificate. As discussed in Sec. III, one limitation of Othello
Hashing is that, if a certificate C is not cached by any device
in the network, the locator will point to an arbitrary device.

Assume the network has n devices and each device can be
referred by a l-bit index: l = dlog2 ne. Our innovation is to
extend the lookup value τ of an Othello to l + l′ bits for
the certificate C of the public key k+. The l least significant
bits (LSBs) of τ is the index of the holder i and the l′ most
significant bits (MSBs) is the check code c of this certificate.
c is determined by the hash value H(k+) using a CRC hash
function H . Since H(k+) is longer than l′ bits,c can simply
be the l′ LSBs of H(k+).

Fig. 4 illustrates an example of the OLoc lookup. When a
device searches its OLoc for the holder of the certificate C
of k+, it compares whether the l′ LSBs of H(k+) matches
the check code c return by OLoc. If they match, it is highly
likely that the certificate is actually cached by the holder. By
“highly likely”, we mean that there is still a probability that
C is not cached but matches the check code, called a false
matching. Such probability is around 1/2l

′
depending on the

length of the check code l′. Longer check code causes lower
false matching rate. The existence of false matchings does
not hurt the correctness and security of CCV, but will slightly
increase the communication cost. In the example of Fig. 4,
both l and l′ are set to 8, which can be adjusted based on the
system requirements.

When the device d gets index i and the check code matches
H(k+), d sends message < REQUEST VALI, C, d, h > to
another device h whose index is i to perform collaborative
validation. If the check code does not match H(k+), the device
terminates CCV and conducts individual validation.

On the tracker side, the OLoc at every device should be
dynamically updated to reflect the update-to-date certificate
to holder mapping. At the very beginning, Othello is empty.
Then the tracker updates the OLoc of all devices at a fixed
interval and distributes newly updated OLoc to the devices.
Although the tracker is responsible for updating all devices in
the network, these updates are efficient and scalable because
all devices may share a same OLoc. When a device caches
a certificate, it sends a NEW CACHE message to notify the
tracker. Hence the tracker keeps track of all cached certificates
in the network and updates the OLoc. The updated OLoc is
then sent to the devices using the UPDATE OLOC message.

We apply another optimization based on the IoT network
features. It is possible that one certificate C is cached by
multiple devices in the network. Hence C may have multiple
holders, any of which can be a valid result of a holder locator.
In the construction stage of Othello, we choose the index of
one holder to be the lookup result of OLoc for the public
key k+ in C. However, it is reasonable to choose the most
suitable holder of C for different devices when there are
multiple feasible options. To construct the OLoc of a device
d, CCV may choose the holder with the shortest network
distance (e.g., smallest hop count) to d. One may note that
using this optimization, the OLoc on different devices may be
different. Two devices on different locations in the network
may be close to different holders. However, constructing these
different versions of OLoc is still efficient. They share the
same set of keys and the same bipartite graph G, because G
depends only on the set of keys, rather than their values. Note
that computing G is the most time-complex step during the
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construction of an Othello. Once G is obtained, determining
the arrays a and b is trivial. Hence all devices can still share a
same G and the arrays a and b can be computed in a short time.
An example of two different OLoc sharing a same G in shown
in Fig. 5. In addition, many devices in network proximity are
still able to use a same OLoc.

In addition, the trust values of IoT devices maintained by the
tracker are used to filter malicious devices. Hence the tracker
will only select the holders whose values are above a pre-
determined threshold θ (θ > 0.5). The tracker updates trust
values periodically.

E. Collaborative Validation

To request a collaborative validation of certificate C, device
d sends a message < REQUEST VALI, C, d, h > to the holder
h. Upon receiving this message, the holder h searches its
cache to find the certificate of the public key k+ on C.
If such certificate exists and is identical to C, it replies
d with a message < REPLY VALI, C, h, d, ‘Correct′ >. If
the certificate exists but is different from C, it replies d
with a message < REPLY VALI, C, h, d, ‘Wrong′ >. If no
certificate of k+ is cached, it replies d with a message
< REPLY NO CERT, C, h, d >. The main reason of a miss-
ing certificate is that previously cached certificates may be
replaced by others due to the lack of cache space, while this
information has not been updated to OLoc. The other reason is
the false matchings. Note all these messages should be signed
by h’s private key for non-repudiation purposes. To avoid
malicious devices send lots of REQUEST VALI messages to
exhaust the resource, the holder can record the number of
request messages from other devices during a time interval.
Once the holder detects an unusually larger number of request
messages from a device, it reports this abnormal behavior to
the tracker. The tracker can then remove this malicious device
from the system.

Once the device d receives the REPLY VALI message with
a ‘Correct’ value from a holder h, it knows the validation
of certificate C is confirmed and it can use C for incoming
communications. If d receives the REPLY VALI message
with a ‘Wrong’ value. It will discard the certificate C and
still forward this event to the tracker. If d receives the RE-
PLY NO CERT message, it runs individual validation. Fig. 6
shows the collaborative validation process.

One additional step is that d may forward the confirmation
events to the tracker, in order to improve the trust value
of the holders that provide validation. It sends a message
< UPDATE TRUST, d, t, E >, where E includes one or more
REPLY VALI messages received during the past period of time

1. Collaborative

Validation

2. Individual

Validation

Tracker

Certificate

𝑑 ℎ

𝑚: REQUEST_VALI

𝑚1: REPLY_VALI

forward 𝑚1

𝑚2: REPLY_NO_CERT

Fig. 6. Collaborative Validation Process

as well as their digital signatures. In order to save message
cost and reduce tracker overhead, d does not forward every
collaborative validation event but on a sampling basis. The
intuition of using sampling is that when a malicious device
keeps providing false validation results, then statistically it will
be detected. The sampling rate can be dynamically adjusted.
For example, the sampling rate can be higher at the beginning
to quickly filter malicious devices. When the system is stable,
the sampling rate is set to be lower to reduce communication
cost and the computation overhead of the tracker.

F. Individual validation and caching

This subsection describes Part 3 of CCV.
If the device d chooses to run individual validation of

certificate C, this process consumes computation resource and
relatively long latency on d. After C being validated, d will
cache C in its local memory. One of the following three cache
replacement strategies will be used to replace old certificate:
random, FIFO (first in, first out), and LRU (Least recently
used). If an old certificate Co is replaced by a new one, d sends
a message < DELETE, Co, u, t > to the tracker. The updates
of cached certificates will be sent to the tracker immediately
to make the tracker knows the up-to-date certificate-to-device
information.

Besides validating the certificate, d also needs to
check the revocation status of the certificate. It sends <
CHECK REVO, C, d, t > to the tracker to query the re-
vocation status. If the certificate is included in the revo-
cation list stored in the tracker. The tracker will send a
< REVO CERT, C, d, t > message to call back C and let
d stop using C and remove it from the cache.

G. Trust Model and Updates

As discussed in the security model, the malicious devices
may conduct seven types of attacks to the whole system. In
order to facilitate the detection of malicious devices and make
them have lower probability to be the selected holder, it is
necessary and essential for CCV to introduce a trust model in
the protocol. In this section, we first introduce the trust model
and then describe the trust update protocol of CCV (Part 5).

1) Trust Model: In CCV, we adopt the following definition
of trust from [6].

Definition 1. In the IoT network, a device d’s trust to
another device d′ is the subjective expectation of d of receiving
positive outcomes through the communications with d′.

Specifically, the trust value in CCV quantifies the expecta-
tion to receive correct validation results of certificates. The
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range of trust value between two devices is [0, 1]. At the
beginning, the trust value between each two devices is set
to be 0.5.

In general, trust can be categorized into two classes: direct
trust and indirect trust. Direct trust is the trust that is
calculated by direct communications between two devices.
Indirect trust is the trust that is calculated by indirect
recommendations, which will be explained later.

We consider direct and indirect trust and use past collab-
oration behaviors between every two devices to measure the
trust value. Direct trust is based on the certificate validation
results between a validation requester and the holder. The
tracker maintains two arrays to record the number of honest
validation events s and the number of dishonest validation
events f between a requester d and a holder d′ during the trust
update interval, respectively. Note that every device forwards
collaborative validation events to the tracker at a sampling
rate. Then the tracker will audit whether the holder honestly
validated the certificates or not. Once a validation result is
audited, the tracker will update the corresponding number
in the arrays. With the information of s and f for any two
cooperative devices, we adopt a subjective logic framework
[17] [18] in the binary domain to compute the corresponding
direct trust value.

Let X = {x, x̄} be a binary domain with binomial random
variable X ∈ X. In our trust model, x represents that device
d trusts the device d′. In the subjective logic framework,
a binomial opinion about a state value x is the ordered
quadruplet wx = (b, d, u, a), where b + d + u = 1 and
b, d, u ∈ [0, 1]. b represents the belief mass in support of x
being true, d represents the disbelief mass in support of x
being false, and u is the uncertainty mass representing the
vacuity of evidence. a is the base rate which represents the
prior probability of x without any evidence. a is set to be 0.5.
The probability of a binomial opinion about value x is

p = b+ au (1)

It can be shown that posteriori probabilities of binary events
can be represented by the beta distribution Beta(α, β) [17].
α and β parameters can be expressed as a function of the
observations (s, f) and the base rate a.

α = s+ 2a, where 0 < a < 1, s ≥ 0

β = f + 2(1− a), where 0 < a < 1, f ≥ 0

Then the beta distribution can be expressed by

f(p | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

The expectation probability of value x is

E(x) =
α

α+ β
=

s

s+ f + 2
+

2

s+ f + 2
a (2)

Combining formula (1) and (2), b, d, u are calculated by the
following formula.

b =
s

s+ f + 2
, d =

f

s+ f + 2
, u =

2

s+ f + 2

One consideration is that more punishment need to be given
when there exist dishonest validation events. Thus the trust

A

B
C

δ > θ

𝜂

𝜹 ∗ 𝜼 + 𝟏 − 𝜹 ∗ 𝝐𝜖

Fig. 7. Calculation of Indirect Trust

value of malicious device can be sharply decreased when the
tracker detects its dishonest validations. We add γ parameter
to adjust the influence of dishonest validation on the trust
value. Therefore, b, d, u is are finally calculate by the following
formula.

b =
s

s+ γf + 2
, e =

γf

s+ γf + 2
, u =

2

s+ γf + 2

Direct trust value is b+ au = s+1
s+γf+2 . Larger γ causes lower

trust value with dishonest validation results.
Indirect trust is based on the recommendation. A device can

aggregate trust recommendations from its trusted devices. The
trust value between two devices is used as the measurement
for choosing recommenders. Then threshold θ is introduced to
select recommenders. Fig. 7 shows how to calculate indirect
trust. Device A trusts B with a direct trust value δ and device
A trusts C with a direct trust value ε. When there is an update
between device B and C, and the new trust value is η. If
the trust value from A to B exceeds the threshold θ, B can
recommend C to A with trust value η. The updated value
is δη + (1 − δ)ε. Hence, A trusts C with the updated trust
value with this recommendation scheme. We set θ to 0.5 in
our experiments.

2) Trust Updates: When the tracker receives an UP-
DATE TRUST message, it verifies the collaborative validation
events in E. The tracker maintains two arrays A and B
to store the numbers of honest and dishonest collaborative
validation events between two devices during the trust update
interval respectively. A[i][j] denotes the number of honest
validations that j provides to i, and B[i][j] denotes the number
of dishonest validations that j provides to i. The tracker also
stores the trust value T [i][j] at current time which denotes
the degree that i trusts j. The update algorithm is shown as
Algorithm 1.

Algorithm 1 Trust Value Update Algorithm
Input: A, B, θ
1: for Every event of holder v helping device u do
2: Compute direct trust td;
3: Update T [u][v] = pT [u][v] + qtd;
4: for Every device i which has T [i][u] > θ do
5: Compute indirect trust ti = T [i][u] ∗ T [u][v] + (1 −

T [i][u]) ∗ T [i][v];
6: Update T [i][v] = pT [i][v] + qti;
7: end for
8: end for

For every computed direct or indirect trust value of device u
for another holder device v, the tracker calculates the moving
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average combining the historical trust value T [u][v] and the
newly computed trust value tuv: T [u][v] = pT [u][v] + qtuv ,
where p, q ∈ (0, 1) and p + q = 1. p and q denotes the
weight of historical trust values and newly updated trust values
respectively. We set p to be 0.4, which gives more weight to
the updated trust value for the device.

In our model, assume the number of honest validation events
of device u and the holder device v during the update interval
is s. The number of dishonest validation events is f . When
f > 1, for γ > s

f , the newly computed trust value s+1
s+γf+2 <

s+1
2s+2 < 0.5. Larger γ causes a higher decrease. Therefore, our
model can make the trust value dramatically decrease below
0.5 to detect the malicious device by setting a larger γ when
the false validation behaviors are detected by the tracker.

If the tracker finds that a validation is dishonest and the
certificate is not valid, it sends a FALSE VALI RESULTS
message to tell the device.

H. Revocation Check

Revocation status check is important in certificate validation
but time-consuming on devices. In CCV, the tracker actively
downloads the Certificate Revocation List (CRL) [21]. A
device can send a CHECK REVO message to request the
revocation status of a certificate. This design makes the device
start using the certificate simultaneously while waiting for the
reply from the tracker. The tracker replies about the status
using a REPLY REVO message. If the certificate is revoked
according to the tracker, the device stops using it, removes it
from the cache, and rolls back to the prior state. In addition,
when the tracker updates its local revocation list and finds
existing certificates cached in the network are expired, it will
send REVO CERT messages to the holders of these certificates
for removing them. If all the trackers stop functioning, the
device uses Online Certificate Status protocol (OCSP) [28] to
query the CA’s OCSP server about the revocation status of the
certificate.

V. SIMULATION RESULTS AND SECURITY ANALYSIS

We implement a complete version of CCV in a packet-
level discrete-event simulator running on a desktop with
3.6GHz Intel(R) Core(TM) i7-7700 CPU. To better simulate
the performance of CCV for IoT devices, the actual processes
of cryptographic operations are implemented and the laten-
cies, including cryptographic latency and network latency, are
simulated. The reason is that the cryptographic latency on a
desktop does not reflect the actual cryptographic overhead on
an IoT device. Hence in the simulator, we use the latency
data of cryptographic operations gathered from a WisMote
platform featuring a 16MHz MSP430 micro-controller [23]
[14]. We use SHA256 for hash operations, elliptic curve NIST
P-256 for PKC, and AES-128 for symmetric-key operations
in secure communications among in-network IoT devices.
We compare CCV to individual certificate validation [14], in
which validating the certificate chain only requires one single
decryption operation. The average time of such individual
certificate validation on WisMote is around 1.9sec with 13.9ms
standard deviation as reported in [14]. Note most existing

certificate validation methods typically require multiple inter-
mediate certificates in a chain, and the validation overhead
grows linearly with the number of intermediate certificates
[14]. For the simulated network latency, every two IoT devices
are connected by one or more hops of routers. We define
one hop latency in our simulation to be 20 ms [31], and the
maximum hop count in the network is set to be 5.

In our experiments, we simulate a number of IoT devices
running the CCV protocol to collaboratively validate the
certificates. We use ‘I-Valid’ to refer to individual validation.
For fair comparison, in CCV we assume at the system start
time, no certificate is validated and cached in the network.
OLoc will use the cache space. Each device in CCV also
stores session keys between each other devices and the tracker.
Every certificate in CCV must be individually validated once
and cached for further use. The tracker updates the OLoc every
five seconds.

We evaluate and compare the following six metrics of CCV.
1) Latency is the average time from receiving a certificate

to finishing validation on a device.
2) Number of local decryptions is the number of times

of running public key decryption to validate certificates. It
characterizes the computation overhead on devices.

3) Average number of messages per certificate evaluates
the communication cost. The number of messages for the
certificate validated through caching by its received device is 0.
When the received device individually validate the certificate
after not finding the helpers, the number of message is 1,
because NEW CACHE message will be generated and sent to
the tracker. When a certificate is successfully validated by the
helper, the number of messages is 2. But when the helper has
not validated the certificate and then the certificate is validated
by its received device, the number of message is 3.

4) Throughput is the maximum number of certificate val-
idations on the simulator. Although the computation resource
on the simulator is different from that on a device, this metric
still reflects whether CCV reduces resource overhead.

5) Computational cost for OLoc update measures the
overhead of the tracker.

6) Trust value changes are used to detect malicious de-
vices.

The number of events that require certificate validations
happening on devices follows the Poisson distribution. The
parameter λ denotes the average number of events happening
in one second, which is used to adjust the frequency of events.
Note the number of events that requires a particular certificate
may not follow a uniform distribution. For example, some
popular data or Internet server may be accessed by many
devices. Hence we vary this distribution in three types: namely
uniform, normal, and power law distributions.

A. Evaluation Results

Performance varies with time. Assuming at the system
start time, no certificate is validated and cached in the network.
Then the devices validate and cache certificates gradually.
We may expect that the validation latency of CCV will
decrease when time increases. Fig. 8 shows the performance
comparison of CCV and I-Valid, by varying the time. In
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Fig. 9. Performance varies with different distributions

this set of experiments, the number of IoT devices is 100,
the total number of certificates is 1000, λ is set to be 10,
and the memory size (OLoc, symmetric keys and cached
certificates) is set to be 32 KB. I-Valid also uses cache
space to store certificates. We show the results for uniform,
normal, and power law distributions. From Fig. 8(a), we find
that the average latency to validate a certificate for CCV
decreases during time 0s to 2000s and then remains stable after
2000s due to collaborative validations. CCV only uses 25%
time compared to I-Valid. More importantly, Fig. 8(b) shows
that CCV always requires around 10 decryptions per device,
while this number can be > 400 for I-Valid at time 5000s.
CCV reduces more than 99% local decryption operations and
significantly saves the computation cost. The latency of CCV
is mainly the network latency. From Fig. 8(c), we can see
that the average number of messages for each certificate in
CCV increases during time 0s to 2000s, but will be stable
after 2000s. It is because more collaborative validation will be
used than individual validation. CCV is very communication-
efficient: the number of messages per certificate is close to two.
The two messages are REQUEST VALI and REPLY VALI
message respectively. We also find that different distributions
have relatively small influence on the performance of CCV
in this experiment, because 100 devices with 32kb cache size
can cache almost all the 1000 certificates. In fact, power law
and normal distributions are more desired for I-Valid protocol
because it prefers a small part of certificates which be used for
many times, causing high cache hit rates. We then conduct an
experiment by changing the number of possible certificates to
be 5000, other settings are the same. Fig. 9 shows the results.
We can find that power law and normal distributions achieve
better performance than uniform distribution when it is hard
for cache pool to cache all the certificates. In the following

experiments, we use uniform distribution, which reflects the
real number of possible certificates.

Varying the number of certificates and cache size. We
conduct experiments by varying both the number of total
possible certificates and the cache size to evaluate their in-
fluence. In this set of experiments, the number of devices is
100, λ is set to be 10, and the time is a 5000s duration, we
set the cache size to be 32kb, 64kb and 128kb respectively.
The total number of possible certificates varies from 100 to
10000. The results are shown in Fig. 10. We find that CCV
outperforms I-Valid protocol with lower latency and lower
number of local decryptions. The total number of possible
certificates influences the performance of CCV and I-Valid,
because the whole system needs to cache more certificates with
larger number of possbible certificates, otherwise certificates
are validated by individual validation. When the number of
total possible certificates increases, the latency (Fig. 10(a))
and number of decryptions (Fig. 10(b)) both increase in CCV,
but still provides advantages compared to I-Valid. There is
a sudden increase at 3000s certificates for CCV with 32KB
cache size and a sudden increase at 6000s with 64KB cache
size in both latency and the number of decryptions. This is
because it is hard for cache pool to cache all the certificates,
causing more individual validations. However, when the cache
is 128KB, the whole cache pool enlarges and there is no such
problem. We also conduct another experiments to analyze the
influence of cache size. In this set of experiments, the number
of devices is 100, λ is set to be 10, the total number of possible
certificates is 10000, the cache size is set to be 32KB, 64KB
and 128KB respectively. Fig. 11 shows the results. We can
find that the average latency with 128KB keeps decreasing
during time 0s to 5000s. CCV with 128KB cache provides the
best performance among them. This is because the cache pool
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Fig. 13. Validation latency with cache
replacement strategies

capacity with 32KB and 64KB per device is not big enough.
Varying λ per device and the number of devices. Larger

number of validation events happening per second indicates
more validation requirements, which brings higher resource
pressure for the devices. In this experiment, we evaluate the
performance varies with λ per device. From Fig. 12(b), we
can see the obvious increase of average latency for I-Valid
when λ increases. In CCV more IoT devices can release the
pressure, because the overall cache pool capacity increases.
Fig. 12 shows the performance varying with λ per device and
the number of devices. In this set of experiments, there are
3000 possible certificates, the cache size is set to be 64KB, and
the time is 1000s duration. We can find that the average latency
of CCV with 50, 100 and 150 devices is small and stays
stable versus λ per device, which shows that CCV has a good
performance with concurrent certificates validation requests
with the shared distributed cache. There is a performance
degradation with 20 devices because the cache pool with 20
devices cannot cache all the 3000 certificates, causing many
individual validations for each device. Thus more certificates
will be individually validated by its receiver, which is shown
in Fig. 12(c).

Cache replacement. This set of experiments vary cache
replacement strategies including random, FIFO and LRU.
Fig. 13 shows that the strategy has little influence on the
latency of CCV, with random and LRU being slightly better.

Throughput. In this set of experiments, we compare the
validation capacity of CCV and I-Valid by keeping devices
performing validations in the simulation. The simulator simu-
lates 100 devices simultaneously. The signing and verification
algorithm is ECDSA with 160 bits keys. Fig. 14 shows that the
number of validations on a device in one millisecond. From
Fig. 14, we can see that CCV has a much better throughput
compared to I-Valid protocol, especially when large percentage
of public keys are recorded in OLoc.

B. Comparison with delegation-based method
We also compare our CCV with delegation-based method.

TABLE I
TIME FOR BUILDING OLOC

# certificates 100 1000 5000 10000 100000
Time (ms) 0.20 1.48 6.59 13.03 131.51

In delegation-based method, there is a trusted third party to
help IoT devices to validate certificates. The third party can
be a smart gateway, a delegation server and etc. IoT devices
do not individually validate certificates. Instead, they send
certificates validation requests to the third party, and then
wait for the reply. After receiving the validation results, IoT
devices can cache the validated certificates. Certificates can
be validated by directly comparing with the cached ones for
each IoT device. When the cache is full, cached certificates
are replaced by newly cached ones according to three cache
replacement strategies: random, FIFO (first in, first out) and
LRU (Least recently used). In this set of experiments, the
number of IoT devices is 100, the total number of possible
certificates is 1000, λ is set to be 10 and the memory
size of each device is 32KB. We assume there is a server
which serves as the trusted third party. And the server has
adequate computation power and memory. Fig. 15 shows the
results. After 5000s, the average latency of each certificate
for CCV and delegation-based method is 0.34s and 0.19s
respectively. We can find that delegation-based method has
better performance than CCV, because all the certificates are
validated by the server with good computation and storage
power. However, the server needs to continuously help IoT
devices validate the certificates, once the server fails, the whole
system cannot validate certificates. CCV can still perform
certificate validation when the tracker stops functioning for
a duration of time.

C. Tracker overhead
The heaviest task for the tracker is to update the OLoc.

Table. I shows the time to construct an OLoc with different
number of certificates. The results show that it is very time-
efficient for the tracker to update the OLoc with a gigantic
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Fig. 18. Trust values

TABLE II
TIME FOR BUILDING OLOC WITH SAME KEYS BUT DIFFERNET VALS

# different vals 10 100 200 300 400
Time (ms) 2.05 2.98 4.33 5.98 7.52

size of certificates. CCV also builds different OLoc to choose
the most suitable holder of C for different devices when there
are multiple choices. The reasons for multiple copies of C are
the update delay of OLoc at the begining and the detection
of malicious devices. The number of different values among
different OLoc is small. Table. II shows the time to construct
an OLoc based on an existing OLoc with 10000 shared keys
but different values. The results show that it is very time-
efficient for the tracker to build the OLoc when there is little
difference in values with an existing OLoc.

We also evaluate the overhead for updating trust values.
Table III shows the time to update trust values with different
number of collaborative events when the number of device is
1000. The results show that it is time-efficient to update trust
values.

Storage cost. We evaluate the storage cost for the tracker
in CCV. The tracker needs to store the following data. 1) The
tracker stores trust values between IoT devices and two arrays
to record the number of honest and dishonest validation events
between devices. 2) The tracker stores all cached certificate-to-
device information to build OLoc. 3) The tracker stores OLoc.
4) The tracker stores keys which include public keys of devices
and symmetric keys between each device. 5) The tracker stores
devices information including the IP of each device and the
distance information between each two devices. Fig. 16 shows
the storage cost. We can find that the tracker requires a small
memory cost. The tracker needs about 1.24 MB storage with
200 devices and 104 possible certificates.

D. Security Results and Analysis
We first provide the evaluation results and then analyze the

TABLE III
TIME FOR UPDATING TRUST VALUES

# events 100 500 1000 5000 10000 100000
Time (ms) 0.87 3.9 7.754 37.422 105.434 1238.2

influence of parameters in the trust model. We also provide a
detailed analysis about how CCV defends against six major
attacks conducted by malicious devices mentioned in Sec. II-B.

Trust value evaluation. We monitor the trust values
changes for both honest and malicious devices. In the set of
experiments, the number of devices is 100, the number of
certificates is 1000, time is set to a 2000s duration, and the
cache size is 32 KB for each device. The initial trust value
between any two devices is set to be 0.5. γ for the trust model
is set to be 10. The trust value will be dynamically updated
due to collaborative validation. The percentage of malicious
devices is 5%. For malicious devices, they randomly choose to
provide honest or dishonest validation when receiving collab-
orative validations. Fig. 18 shows the trust value changes. We
show the results of five randomly chosen honest (Fig. 18(a))
and the five malicious devices (Fig. 18(b)). The other honest
devices show similar results. We also show average trust values
changes of all the honest devices, which is denoted by average
in Fig. 18(a). We find that the trust values of honest devices
increase to > 0.5 and are maintained in a high level. On the
other hand, the trust values of malicious devices are all < 0.5
once they provide false validations. They will be filtered by the
tracker during OLoc construction. We also show the number of
total false validations by malicious devices in Fig. 17. When
malicious devices are selected as helpers, they may conduct
false validations. However, their trust values will dramatically
decrease below 0.5 once the dishonest behaviors are detected
by the tracker. Thus, they cannot be chosen as helpers anymore
and the number of false validations will remain same.

Varying parameter γ. Parameter γ is used to adjust the
punishment degree of dishonest validations. Larger γ will
cause lower trust value of the device when the tracker detects
it has done dishonest validations. In this set of experiment,
the setting is the same as that in the trust value evaluation
experiment, except that γ is set to be 1, 2, 5, 10 respectively.
The malicious devices begin to provide false validations after
1000s. Fig. 19 shows the trust values changes of malicious
devices with different γ. There is a sharp decrease of the
trust values near 1000s because of false validations provided
by the malicious devices. The sharp decrease shows that
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Fig. 19. Trust values of malicious devices with different γ
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Fig. 20. Performance varies with percentage of malicious devices after 2000s

the tracker detects the malicious behaviors and updates trust
values of them timely. Different γ causes different degrees
of decrease. Fig. 19(d) shows the largest decrease. The trust
values dramatically decreases below 0.5. Thus we set γ to
be 10 in our experiments, because it is sufficient to make
malicious devices not chosen to be the collaborators once the
dishonest validations are detected.

Varying the percentage of malicious devices. Fig. 20
shows the performance of CCV varying with the percentage
of malicious devices, ranging from 0% to 50%, after 1000s.
At that time, most malicious devices will be detected and not
used but the capacity of the whole cache pool decreases. Hence
we find that the average number of decryptions (Fig. 20(b))
increases for CCV protocol with more malicious devices. The
average number of decryptions for I-Valid keeps increasing
with time, which is shown in Fig. 8(b). It reaches 95.15 at
1000s, which is much larger than 20.97 for CCV. The latency
(Fig. 20(a)) has a slightly increase from 0.469 to 0.635. The
reason is that more malicious devices indeed decreases the
capacity of cache, causing the increase of average latency. But
the cache pool of the remaining good devices can still support
such number of total certificates, thus the increase of the
latency is small. The average message per certificate decreases
from 1.88 to 1.75 in Fig. 20(c) because more individual
validation is conducted. However, CCV protocol still achieves
a much better performance on average latency and number of
local decryptions, compared to I-Valid.

False validation attack: The evaluation of trust value
changes has been analyzed and the results, such as those in
Fig. 17, indicate that after a short period of time, the malicious
devices are not able to conduct false validation attacks.

Self-promoting attack: Trust value of each device is main-
tained and updated by the tracker. It is hard for a malicious
device to promote itself to be a collaborator.

Defamation attack: Each collaborative validation event

must carry a digital signature of the holder for authenticity
and non-repudiation purposes. The digital signature will be
verified by the tracker. Hence a malicious device cannot forge
a false validation event from a honest device unless it owns
the private key of the honest device.

Traitor attack: As shown in Fig. 18(b) and Fig. 19, once
the malicious device provides dishonest validations, the trust
value will drastically drop below the threshold, thus it can
be selected as a helper in CCV anymore. Even the attacker
intends to provide good validation when it senses its lower
trust value. However, it does not have the chance anymore.

Whitewashing attack: The tracker can audit the identity
of the device. Thus, the high cost will effectively prevent the
whitewashing attack.

Collusion attack: Two or more malicious devices may
improve their trust values by claiming that they helped each
other. However, a malicious device will eventually provide
a number of dishonest validations, which will be detected
by the tracker statistically. In our model, the trust value
reduction from one dishonest validation will be much larger
than the trust value improvement from one honest validation.
Hence it is only possible that the colluding malicious devices
claim collaborative validations much more frequently than
providing dishonest validations. Extremely high frequency of
collaborative validations will also be detected by the tracker.

Sybil attack: The tracker can audit the identity of the
device, which is shown in the bootstrap phase. Thus, the high
cost will effectively prevent the Sybil attack.

VI. RELATED WORK

Certificate validation. Certificate-based PKIs are responsi-
ble for creating, managing, distributing, storing and revoking
public key certificates, such as X.509. They are widely used
in Web browsing (TLS), email (S/MIME) and document
authentication. Efficient certificate validation has attracted a
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broad attention of the research community in recent years [14]
[26] [2] [1] [20] [41] [15] [37]. Some approaches delegate
validation task to a trusted third party, such as a smart gateway
[26] [38], a delegation server [14] and local ISPs [2]. Some
approaches use prefetching and prevalidation techniques to
reduce certificate validation cost [37] [15], which can remove
the time pressure from the certificate validation. However,
this approach brings huge cost for memory. Some approaches
aim to reduce cost for checking certificates revocation status
[12] [24] [41]. For example, Gañán et al. [12] proposes a
collaborative certificate status checking mechanism to dis-
tribute certificate revocation information in Vehicular Ad Hoc
Networks, which can provide a quick response to check
revocation status.

Trust Model. A trust model is used to build trust relations
between two nodes in a network. Trust is mainly divided into
direct trust and indirect trust. Direct trust is computed by
direct communications, while indirect trust is calculated by
recommendation. Some algorithms can be used to calculate
direct trust, such as subjective logic [17] [18], fuzzy method
[6] [35], Bayesian [4] and game theory [9]. For indirect trust,
devices in the trust model can get trust information from their
trusted devices (recommender) [32] [7], then the trust value
can be updated. In the trust model, direct trust and indirect
are always combined to calculate the trust value [32] [7]
[11] [16] [44]. For example, Feng et al. [11] proposes the
NBBTE algorithm to establish the direct trust and indirect
values between two nodes by comprehensively considering and
combining various factors. Another efficient distributed trust
model (EDTM) has been proposed in [16], which considers
both direct and indirect trust and takes more trust metrics
such as the energy level information into consideration besides
communication behaviors.

VII. DISCUSSION

One critical concern is the false validation results of the
certificates provided by malicious IoT devices. In CCV, the
IoT device will continue to communicate with another devices
or servers when their certificates are validated, regardless of
the wrong validation results from malicious devices. However,
collaborative validation results will be also forwarded to the
server on a sampling basis at the same time. The tracker will
audit the validation results. If the tracker detects false valida-
tion results, it will send FALSE VALI RESULTS message to
the corresponding device. The device will then stop the con-
nection immediately when it receives the message. The latency
to discover false certificates for the device is not too long.
The main cost lies in the communication overhead between
the device and the tracker. On the other hand, the tracker will
punish the malicious device by drastically decreasing its trust
value, which can be shown in Fig. 18(b). Thus, the malicious
device cannot be chosen as collaborators anymore. To balance
the overhead of the tracker and the security of whole system,
all the certificates validation results are forwarded to the
tracker at the beginning in order to quickly filter malicious
devices. When the system is stable after a period of time, we
can then set a proper sampling rate.

VIII. CONCLUSION AND FUTURE WORK

In this paper we design and evaluate the CCV protocol
for fast public-key certificate validation. Our contributions
include a memory-efficient and fast locator for certificate
holders, called OLoc; a trust model for CCV to evaluate
the trustworthiness of each device to avoid dishonest col-
laborative validation from malicious devices; and a complete
protocol suite for efficient OLoc update, cache replacement,
and revocation status checking mechanisms in a dynamic
network. Evaluation results show that CCV significantly saves
computation resource and validation latency on IoT devices. In
future, we will apply distributed caching for storing revocation
list and checking revocation status of the certificates.
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